Improved Back-Projection Cortical Potential Imaging by Multi-resolution Optimization Technique

Abstract

Electroencephalogram (EEG) has evolved to be a well-established tool for imaging brain activity. This progress is mainly due to the development of high-resolution (HR) EEG methods. One class of HR-EEG is the cortical potential imaging (CPI), which aims to estimate the potential distribution on the cortical surface, which is much more informative than EEG. Even though these methods exhibit good performance, most of them have inherent inaccuracies that originate from their operating principles that constrain the solution or require a complex calculation process. The back-projection CPI (BP-CPI) method is relatively new and has the advantage of being constraint-free and computation inexpensive. The method has shown relatively good accuracy, which is necessary to become a clinical tool. However, better performance must be achieved. In the present study, two improvements are proposed. Both are embedded as adjacent stages to the BP-CPI and are based on the multi-resolution optimization approach (MR-CPI). A series of Monte-Carlo simulations were performed to examine the characteristics of the proposed improvements. Additional tests were done, including different EEG noise levels and variation in electrode-numbers. The results showed highly accurate cortical potential estimations, with a reduction in estimation error by a factor of 3.75 relative to the simple BP-CPI estimation error. We also validated these results with true EEG data. Analyzing these EEGs, we have demonstrated the MR-CPI competence to correctly localize cortical activations in a real environment. The MR-CPI methods were shown to be reliable for estimating cortical potentials, enabling researchers to obtain fast and robust high-resolution EEGs.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Ahissar E, Nagarajan S, Ahissar M, Protopapas A, Mahncke H, Merzenich MM (2001) Speech comprehension is correlated with temporal response patterns recorded from auditory cortex. Proc Natl Acad Sci 98(23):13367–13372

    Article  CAS  PubMed  Google Scholar 

  2. Babiloni C, Frisoni G, Steriade M, Bresciani L, Binetti G, Del Percio C, Geroldi C, Miniussi C, Nobili F, Rodriguez G et al (2006) Frontal white matter volume and delta eeg sources negatively correlate in awake subjects with mild cognitive impairment and alzheimer’s disease. Clin Neurophysiol 117(5):1113–1129

    Article  PubMed  Google Scholar 

  3. Babiloni F, Carducci F, Babiloni C, Urbano A (1998) Improved realistic laplacian estimate of highly-sampled eeg potentials by regularization techniques. Electroencephalogr Clin Neurophysiol 106(4):336–343

    Article  CAS  PubMed  Google Scholar 

  4. Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, Hämäläinen MS, Marinkovic K, Schacter DL, Rosen BR et al (2006) Top-down facilitation of visual recognition. Proc Natl Acad Sci USA 103(2):449–454

    Article  CAS  PubMed  Google Scholar 

  5. Baussard A, Miller EL, Lesselier D (2004) Adaptive multiscale reconstruction of buried objects. Inverse Probl 20(6):S1

    Article  Google Scholar 

  6. Bendsoe MP, Sigmund O (2013) Topology optimization: theory, methods, and applications. Springer, Berlin

    Google Scholar 

  7. Benedetti M, Lesselier D, Lambert M, Massa A (2008) A multi-resolution technique based on shape optimization for the reconstruction of homogeneous dielectric objects. Inverse Probl 25(1):015009

    Article  Google Scholar 

  8. Brodbeck V, Spinelli L, Lascano AM, Wissmeier M, Vargas MI, Vulliemoz S, Pollo C, Schaller K, Michel CM, Seeck M (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134(10):2887–2897

    Article  PubMed  PubMed Central  Google Scholar 

  9. Céa J, Garreau S, Guillaume P, Masmoudi M (2000) The shape and topological optimizations connection. Comput Methods Appl Mech Eng 188(4):713–726

    Article  Google Scholar 

  10. David O, Kiebel SJ, Harrison LM, Mattout J, Kilner JM, Friston KJ (2006) Dynamic causal modeling of evoked responses in eeg and meg. NeuroImage 30(4):1255–1272

    Article  PubMed  Google Scholar 

  11. Ding L, He B (2008) Sparse source imaging in electroencephalography with accurate field modeling. Hum Brain Mapp 29(9):1053–1067

    Article  PubMed  PubMed Central  Google Scholar 

  12. Edelman BJ, Baxter B, He B (2016) Eeg source imaging enhances the decoding of complex right-hand motor imagery tasks. IEEE Trans Biomed Eng 63(1):4–14

    Article  PubMed  Google Scholar 

  13. Feijóo GR, Oberai AA, Pinsky PM (2003) An application of shape optimization in the solution of inverse acoustic scattering problems. Inverse Probl 20(1):199

    Article  Google Scholar 

  14. Franceries X, Chauveau N, Sors A, Masquere M, Celsis P (2012) Conjugate gradient method applied to cortical imaging in eeg/erp. In: Petrova R (ed) Finite volume method-powerful means of engineering design. InTech, Rijeka

    Google Scholar 

  15. Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113(5):702–712

    Article  PubMed  Google Scholar 

  16. Gavit L, Baillet S, Mangin JF, Pescatore J, Garnero L (2001) A multiresolution framework to meg/eeg source imaging. IEEE Trans Biomed Eng 48(10):1080–1087

    Article  CAS  PubMed  Google Scholar 

  17. Gevins A, Le J, Brickett P, Reutter B, Desmond J (1991) Seeing through the skull: advanced eegs use mris to accurately measure cortical activity from the scalp. Brain Topogr 4(2):125–131

    Article  CAS  PubMed  Google Scholar 

  18. Gevins A, Le J, Martin NK, Brickett P, Desmond J, Reutter B (1994) High resolution eeg: 124-channel recording, spatial deblurring and mri integration methods. Electroencephalogr Clin Neurophysiol 90(5):337–358

    Article  CAS  PubMed  Google Scholar 

  19. Grippo L, Lampariello F, Lucidi S (1986) A nonmonotone line search technique for newtons method. SIAM J Numer Analy 23(4):707–716

    Article  Google Scholar 

  20. Hämäläinen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32(1):35–42

    Article  PubMed  Google Scholar 

  21. Haor D, Shavit R, Shapiro M, Geva A (2017) Back-projection cortical potential imaging: theory and results. IEEE Trans Med Imaging 36(7):1583–1595

    Article  PubMed  Google Scholar 

  22. He B, Zhang X, Lian J, Sasaki H, Wu D, Towle V (2002) Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects’ magnetic resonance images. NeuroImage 16(3):564–576

    Article  CAS  PubMed  Google Scholar 

  23. Hillyard SA, Anllo-Vento L (1998) Event-related brain potentials in the study of visual selective attention. Proc Natl Acad Sci 95(3):781–787

    Article  CAS  PubMed  Google Scholar 

  24. Hopf JM, Vogel E, Woodman G, Heinze HJ, Luck SJ (2002) Localizing visual discrimination processes in time and space. J Neurophysiol 88(4):2088–2095

    Article  PubMed  Google Scholar 

  25. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall Inc, Englewood Cliffs

    Google Scholar 

  26. Johnson B, Xie Z (2011) Unsupervised image segmentation evaluation and refinement using a multi-scale approach. ISPRS J Photogramm Remote Sens 66(4):473–483

    Article  Google Scholar 

  27. Jousmäki V (2000) Tracking functions of cortical networks on a millisecond timescale. Neural Netw 13(8):883–889

    Article  PubMed  Google Scholar 

  28. Komssi S, Huttunen J, Aronen HJ, Ilmoniemi R (2004) Eeg minimum-norm estimation compared with meg dipole fitting in the localization of somatosensory sources at s1. Clin Neurophysiol 115(3):534–542

    Article  CAS  PubMed  Google Scholar 

  29. Lai Y, Zhang X, van Drongelen W, Korhman M, Hecox K, Ni Y, He B (2011) Noninvasive cortical imaging of epileptiform activities from interictal spikes in pediatric patients. Neuroimage 54(1):244–252

    Article  PubMed  Google Scholar 

  30. Lantz G, De Peralta RG, Spinelli L, Seeck M, Michel C (2003) Epileptic source localization with high density eeg: how many electrodes are needed? Clin Neurophysiol 114(1):63–69

    Article  CAS  PubMed  Google Scholar 

  31. Li J, Liu H, Zou J (2008) Multilevel linear sampling method for inverse scattering problems. SIAM J Sci Comput 30(3):1228–1250

    Article  Google Scholar 

  32. Luck SJ (2014) An introduction to the event-related potential technique. MIT press, Cambridge

    Google Scholar 

  33. Ma X, Guan X (2005) Loreta-contracting algorithm for solving eeg source distribution problems. COMPEL-Int J Comput Math Electr Electron Eng 24(3):821–828

    Article  Google Scholar 

  34. McNay D, Michielssen E, Rogers R, Taylor S, Akhtari M, Sutherling W (1996) Multiple source localization using genetic algorithms. J Neurosci Methods 64(2):163–172

    Article  CAS  PubMed  Google Scholar 

  35. Miller EL, Willsky AS (1996) A multiscale, statistically based inversion scheme for linearized inverse scattering problems. IEEE Trans Geosci Remote Sens 34(2):346–357

    Article  Google Scholar 

  36. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18(1):49–65

    Article  CAS  PubMed  Google Scholar 

  37. Pascual-Marqui RD, Lehmann D, Koukkou M, Kochi K, Anderer P, Saletu B, Tanaka H, Hirata K, John ER, Prichep L et al (2011) Assessing interactions in the brain with exact low-resolution electromagnetic tomography. Philos Trans R Soc Lond A 369(1952):3768–3784

    Article  Google Scholar 

  38. Roy AV, Jamison KW, He S, Engel SA, He B (2017) Deactivation in the posterior mid-cingulate cortex reflects perceptual transitions during binocular rivalry: evidence from simultaneous eeg-fmri. NeuroImage 152:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sergent C, Baillet S, Dehaene S (2005) Timing of the brain events underlying access to consciousness during the attentional blink. Nat Neurosci 8(10):1391

    Article  CAS  PubMed  Google Scholar 

  40. Sohrabpour A, Lu Y, Kankirawatana P, Blount J, Kim H, He B (2015) Effect of eeg electrode number on epileptic source localization in pediatric patients. Clin Neurophysiol 126(3):472–480

    Article  PubMed  Google Scholar 

  41. Sohrabpour A, Lu Y, Worrell G, He B (2016) Imaging brain source extent from eeg/meg by means of an iteratively reweighted edge sparsity minimization (ires) strategy. NeuroImage 142:27–42

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stern Y, Reches A, Geva AB (2016) Brain network activation analysis utilizing spatiotemporal features for event related potentials classification. Front Comput Neurosci 10:137

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, Mazoyer B, Joliot M (2002) Automated anatomical labeling of activations in spm using a macroscopic anatomical parcellation of the mni mri single-subject brain. Neuroimage 15(1):273–289

    Article  CAS  Google Scholar 

  44. Uutela K, Hamalainen M, Salmelin R (1998) Global optimization in the localization of neuromagnetic sources. IEEE Trans Biomed Eng 45(6):716–723

    Article  CAS  PubMed  Google Scholar 

  45. Van Uitert R, Johnson C, Zhukov L (2004) Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models. IEEE Trans Biomed Eng 51(12):2129–2137

    Article  PubMed  Google Scholar 

  46. Wang JZ, Williamson SJ, Kaufman L (1992) Magnetic source images determined by a lead-field analysis: the unique minimum-norm least-squares estimation. IEEE Trans Biomed Eng 39(7):665–675

    Article  CAS  PubMed  Google Scholar 

  47. Yamashita Y (1982) Theoretical studies on the inverse problem in electrocardiography and the uniqueness of the solution. IEEE Trans Biomed Eng 11:719–725

    Article  Google Scholar 

  48. Zhu M, Zhang W, Dickens DL, Ding L (2014) Reconstructing spatially extended brain sources via enforcing multiple transform sparseness. NeuroImage 86:280–293

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported (in part) by Grant from the MAGNET program of the Israeli OCS and by ElMindA Ltd.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dror Haor.

Additional information

Handling Editor: Bin He.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 2.90 MB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Haor, D., Joffe, R., Shavit, R. et al. Improved Back-Projection Cortical Potential Imaging by Multi-resolution Optimization Technique. Brain Topogr 32, 66–79 (2019). https://doi.org/10.1007/s10548-018-0668-1

Download citation

Keywords

  • Multi-scaling
  • Cortical potential imaging
  • Back-projection
  • Optimization
  • Forward solution
  • Monte-Carlo