Abstract
We investigated the flexible modulation of undirected functional connectivity (uFC) of brain pathways during simple uni-manual responding. Two questions were central to our interests: (1) does response hand (dominant vs. non-dominant) differentially modulate connectivity and (2) are these effects related to responding under varying motor sets. fMRI data were acquired in twenty right-handed volunteers who responded with their right (dominant) or left (non-dominant) hand (blocked across acquisitions). Within acquisitions, the task oscillated between periodic responses (promoting the emergence of motor sets) or randomly induced responses (disrupting the emergence of motor sets). Conjunction analyses revealed eight shared nodes across response hand and condition, time series from which were analyzed. For right hand responses connectivity of the M1 ←→ Thalamus and SMA ←→ Parietal pathways was more significantly modulated during periodic responding. By comparison, for left hand responses, connectivity between five network pairs (including M1 and SMA, insula, basal ganglia, premotor cortex, parietal cortex, thalamus) was more significantly modulated during random responding. uFC analyses were complemented by directed FC based on multivariate autoregressive models of times series from the nodes. These results were complementary and highlighted significant modulation of dFC for SMA → Thalamus, SMA → M1, basal ganglia → Insula and basal ganglia → Thalamus. The results demonstrate complex effects of motor organization and task demand and response hand on different connectivity classes of fMRI data. The brain’s sub-networks are flexibly modulated by factors related to motor organization and/or task demand, and our results have implications for assessment of medical conditions associated with motor dysfunction.
This is a preview of subscription content,
to check access.






Similar content being viewed by others
References
Abboud R, Noronha C, Diwadkar VA (2017) Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur Psychiatry 44:125–133
Adhikari BM, Epstein CM, Dhamala M (2018) Enhanced brain network activity in complex movement rhythms: a simultaneous functional magnetic resonance imaging and electroencephalography study. Brain Connect 8(2):68–81
Ahissar E, Oram T (2015) Thalamic relay or cortico-thalamic processing? Old question, new answers. Cereb Cortex 25(4):845–848
Alahmadi AA, Pardini M, Samson RS, D’Angelo E, Friston KJ, Toosy AT et al (2015) Differential involvement of cortical and cerebellar areas using dominant and nondominant hands: an FMRI study. Hum Brain Mapp 36(12):5079–5100
Amunts K, Schlaug G, Schleicher A, Steinmetz H, Dabringhaus A, Roland PE et al (1996) Asymmetry in the human motor cortex and handedness. Neuroimage 4(3 Pt 1):216–222
Ardila A, Bernal B, Rosselli M (2018) Executive functions brain system: an activation likelihood estimation meta-analytic study. Arch Clin Neuropsychol 33(4):379–405
Asemi A, Ramaseshan K, Burgess A, Diwadkar VA, Bressler SL (2015) Dorsal anterior cingulate cortex modulates supplementary motor area in coordinated unimanual motor behavior. Front Hum Neurosci 9:309
Bernard JA, Seidler RD (2012) Hand dominance and age have interactive effects on motor cortical representations. PLoS ONE, 7(9), e45443
Bressler SL, Seth AK (2011) Wiener-Granger causality: a well established methodology. Neuroimage 58(2):323–329
Bressler SL, Tognoli E (2006) Operational principles of neurocognitive networks. Int J Psychophysiol 60(2):139–148
Bressler SL, Tang W, Sylvester CM, Shulman GL, Corbetta M (2008) Top-down control of human visual cortex by frontal and parietal cortex in anticipatory visual spatial attention. J Neurosci 28(40):10056–10061
Buchanan RW, Heinrichs DW (1989) The Neurological Evaluation Scale (NES): a structured instrument for the assessment of neurological signs in schizophrenia. Psychiatry Res 27:335–350
Corbetta M, Akbudak E, Conturo TE, Snyder AZ, Ollinger JM, Drury HA et al (1998) A common network of functional areas for attention and eye movements. Neuron 21(4):761–773
Cunnington R, Windischberger C, Deecke L, Moser E (2003) The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response. Neuroimage 20(1):404–412
Diwadkar VA, Murphy ER, Freedman RR (2014) Temporal sequencing of brain activations during naturally occurring thermoregulatory events. Cereb Cortex 24:3006–3013
Diwadkar VA, Asemi A, Burgess A, Chowdury A, Bressler SL (2017a) Potentiation of motor sub-networks for motor control but not working memory: interaction of dACC and SMA revealed by resting-state directed functional connectivity. PLoS ONE, 12(3), e0172531
Diwadkar VA, Bellani M, Chowdury A, Savazzi S, Perlini C, Marinelli V et al (2017b) Activations in gray and white matter are modulated by uni-manual responses during within and inter-hemispheric transfer: effects of response hand and right-handedness. Brain Imaging Behav. https://doi.org/10.1007/s11682-017-9750-7
Eickhoff SB, Bzdok D, Laird AR, Kurth F, Fox PT (2012) Activation likelihood estimation meta-analysis revisited. Neuroimage 59(3):2349–2361
First MD, Gibbon M, Spitzer RL, Williams JBW, Benjamin LS (1997) Structured clinical interview for DSM-IV axis II personality disorders. Biometrics Research Department, NYSPI, New York
Fogassi L, Luppino G (2005) Motor functions of the parietal lobe. Curr Opin Neurobiol 15(6):626–631
Fogassi L, Ferrari PF, Gesierich B, Rozzi S, Chersi F, Rizzolatti G (2005) Parietal lobe: from action organization to intention understanding. Science 308(5722):662–667
Friedman A, Burgess A, Ramaseshan K, Easter P, Khatib D, Chowdury A et al (2017) Brain network dysfunction in obsessive-compulsive disorder induced by simple uni-manual behavior: the role of the dorsal anterior cingulate cortex. Psychiatry Res Neuroimaging 260:6–15
Friston KJ (2011) Functional and effective connectivity: a review. Brain Connect 1(1):13–36
Gao Q, Duan X, Chen H (2011) Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage 54(2):1280–1288
Ghaziri J, Tucholka A, Girard G, Houde JC, Boucher O, Gilbert G et al (2017) The corticocortical structural connectivity of the human insula. Cereb Cortex 27(2):1216–1228
Goble DJ, Coxon JP, Van Impe A, De Vos J, Wenderoth N, Swinnen SP (2010) The neural control of bimanual movements in the elderly: brain regions exhibiting age-related increases in activity, frequency-induced neural modulation, and task-specific compensatory recruitment. Hum Brain Mapp 31(8):1281–1295
Goense JB, Logothetis NK (2008) Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr Biol 18(9):631–640
Grafton ST, Mazziotta JC, Woods RP, Phelps ME (1992) Human functional anatomy of visually guided finger movements. Brain 115(Pt 2):565–587
Grafton ST, Hazeltine E, Ivry RB (2002) Motor sequence learning with the nondominant left hand. A PET functional imaging study. Exp Brain Res 146(3):369–378
Grefkes C, Eickhoff SB, Nowak DA, Dafotakis M, Fink GR (2008) Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM. Neuroimage 41(4):1382–1394
Guo Y, Schmitz TW, Mur M, Ferreira CS, Anderson MC (2017) A supramodal role of the basal ganglia in memory and motor inhibition: meta-analytic evidence. Neuropsychologia 108:117–134
Guye M, Parker GJ, Symms M, Boulby P, Wheeler-Kingshott CA, Salek-Haddadi A et al (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19(4):1349–1360
Haaland KY, Harrington DL, Knight RT (2000) Neural representations of skilled movement. Brain 123(Pt 11):2306–2313
Haaland KY, Elsinger CL, Mayer AR, Durgerian S, Rao SM (2004) Motor sequence complexity and performing hand produce differential patterns of hemispheric lateralization. J Cogn Neurosci 16(4):621–636
Hoffstaedter F, Grefkes C, Caspers S, Roski C, Palomero-Gallagher N, Laird AR et al (2014) The role of anterior midcingulate cortex in cognitive motor control: evidence from functional connectivity analyses. Hum Brain Mapp 35(6):2741–2753
Hoge RD, Atkinson J, Gill B, Crelier GR, Marrett S, Pike GB (1999) Stimulus-dependent BOLD and perfusion dynamics in human V1. Neuroimage 9(6 Pt 1):573–585
Jagtap P, Diwadkar VA (2016) Effective connectivity of ascending and descending frontalthalamic pathways during sustained attention: complex brain network interactions in adolescence. Hum Brain Mapp 37(7):2557–2570
Kim SG, Ashe J, Hendrich K, Ellermann JM, Merkle H, Ugurbil K et al (1993) Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. Science 261(5121):615–617
Kolodny T, Mevorach C, Shalev L (2017) Isolating response inhibition in the brain: parietal versus frontal contribution. Cortex 88:173–185
Lehericy S, Bardinet E, Tremblay L, Van de Moortele PF, Pochon JB, Dormont D et al (2006) Motor control in basal ganglia circuits using fMRI and brain atlas approaches. Cereb Cortex 16(2):149–161
Liepmann H (1905) The left hemisphere and action. Republished in 1908 in Drei Aufsatze aus dem Apraxiegebiet. Karger, Berlin
Logothetis NK (2008) What we can do and what we cannot do with fMRI. Nature 453(7197):869–878
Lotze M, Erb M, Flor H, Huelsmann E, Godde B, Grodd W (2000) fMRI evaluation of somatotopic representation in human primary motor cortex. Neuroimage 11(5 Pt 1):473–481
Maldjian JA, Laurienti PJ, Kraft RA, Burdette JH (2003) An automated method for neuroanatomic and cytoarchitectonic atlas-based interrogation of fMRI data sets. Neuroimage 19(3):1233–1239
Mesulam MM (1998) From sensation to cognition. Brain 121:1013–1052
Miller EK, Cohen JD (2001) An integrative theory of prefrontal cortex function. Annu Rev Neurosci 24:167–202
Muzik O, Diwadkar VA (2016) In vivo correlates of thermoregulatory defense in humans: temporal course of sub-cortical and cortical responses assessed with fMRI. Hum Brain Mapp 37(9):3188–3202
Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9(11):856–869
Nichols T, Brett M, Andersson J, Wager T, Poline JB (2005) Valid conjunction inference with the minimum statistic. Neuroimage 25(3):653–660
Nuber S, Petrasch-Parwez E, Winner B, Winkler J, von Horsten S, Schmidt T et al (2008) Neurodegeneration and motor dysfunction in a conditional model of Parkinson’s disease. J Neurosci 28(10):2471–2484
Park HJ, Friston K (2013) Structural and functional brain networks: from connections to cognition. Science 342(6158):1238411
Passingham RE, Stephan KE, Kotter R (2002) The anatomical basis of functional localization in the cortex. Nat Rev Neurosci 3(8):606–616
Paus T (2001) Primate anterior cingulate cortex: where motor control, drive and cognition interface. Nat Rev Neurosci 2(6):417–424
Pool EM, Rehme AK, Fink GR, Eickhoff SB, Grefkes C (2014) Handedness and effective connectivity of the motor system. Neuroimage 99:451–460
Pool EM, Rehme AK, Eickhoff SB, Fink GR, Grefkes C (2015) Functional resting-state connectivity of the human motor network: differences between right- and left-handers. Neuroimage 109:298–306
Pool EM, Leimbach M, Binder E, Nettekoven C, Eickhoff SB, Fink GR et al (2018) Network dynamics engaged in the modulation of motor behavior in stroke patients. Hum Brain Mapp 39(3):1078–1092
Price CJ, Friston KJ (2005) Functional ontologies for cognition: the systematic definition of structure and function. Cogn Neuropsychol 22(3):262–275
Rathelot JA, Dum RP, Strick PL (2017) Posterior parietal cortex contains a command apparatus for hand movements. Proc Natl Acad Sci USA 114(16):4255–4260
Saalmann YB, Kastner S (2011) Cognitive and perceptual functions of the visual thalamus. Neuron 71(2):209–223
Sale MV, Reid LB, Cocchi L, Pagnozzi AM, Rose SE, Mattingley JB (2017) Brain changes following four weeks of unimanual motor training: evidence from behavior, neural stimulation, cortical thickness, and functional MRI. Hum Brain Mapp 38(9):4773–4787
Sarfeld AS, Diekhoff S, Wang LE, Liuzzi G, Uludag K, Eickhoff SB et al (2012) Convergence of human brain mapping tools: neuronavigated TMS parameters and fMRI activity in the hand motor area. Hum Brain Mapp 33(5):1107–1123
Seizeur R, Magro E, Prima S, Wiest-Daessle N, Maumet C, Morandi X (2014) Corticospinal tract asymmetry and handedness in right- and left-handers by diffusion tensor tractography. Surg Radiol Anat 36(2):111–124
Shmuel A, Augath M, Oeltermann A, Logothetis NK (2006) Negative functional MRI response correlates with decreases in neuronal activity in monkey visual area V1. Nat Neurosci 9(4):569–577
Silverstein B, Bressler S, Diwadkar VA (2016) Inferring the dysconnection syndrome in schizophrenia: interpretational considerations on methods for the network analyses of fMRI data. Front Psychiatry 7:132
Singh KD (2012) Which “neural activity” do you mean? fMRI, MEG, oscillations and neurotransmitters. Neuroimage 62(2):1121–1130
Singh LN, Higano S, Takahashi S, Kurihara N, Furuta S, Tamura H et al (1998) Comparison of ipsilateral activation between right and left handers: a functional MR imaging study. Neuroreport 9(8):1861–1866
Sisti HM, Geurts M, Clerckx R, Gooijers J, Coxon JP, Heitger MH et al (2011) Testing multiple coordination constraints with a novel bimanual visuomotor task. PLoS ONE, 6(8), e23619
Tang W, Bressler SL, Sylvester CM, Shulman GL, Corbetta M (2012) Measuring Granger causality between cortical regions from voxelwise fMRI BOLD signals with LASSO. PLoS Comput Biol, 8(5), e1002513
Tanji J (1994) The supplementary motor area in the cerebral cortex. Neurosci Res 19(3):251–268
Tomasino B, Gremese M (2016) The cognitive side of M1. Front Hum Neurosci 10:298
Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824
Tzourio-Mazoyer N, Petit L, Zago L, Crivello F, Vinuesa N, Joliot M et al (2015) Between-hand difference in ipsilateral deactivation is associated with hand lateralization: fMRI mapping of 284 volunteers balanced for handedness. Front Hum Neurosci 9:5
Uddin LQ, Nomi JS, Hebert-Seropian B, Ghaziri J, Boucher O (2017) Structure and function of the human insula. J Clin Neurophysiol 34(4):300–306
van den Berg FE, Swinnen SP, Wenderoth N (2011) Involvement of the primary motor cortex in controlling movements executed with the ipsilateral hand differs between left- and right-handers. J Cogn Neurosci 23(11):3456–3469
Velikova S, Locatelli M, Insacco C, Smeraldi E, Comi G, Leocani L (2010) Dysfunctional brain circuitry in obsessive-compulsive disorder: source and coherence analysis of EEG rhythms. Neuroimage 49(1):977–983
Volkmann J, Schnitzler A, Witte OW, Freund H (1998) Handedness and asymmetry of hand representation in human motor cortex. J Neurophysiol 79(4):2149–2154
Ward BD (2000) Simultaneous inference for fMRI data. Medical College of Wisconsin, Milwaukee, WI
Whitfield-Gabrieli S, Nieto-Castanon A (2012) Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect 2(3):125–141
Witt ST, Stevens MC (2013) The role of top-down control in different phases of a sensorimotor timing task: a DCM study of adults and adolescents. Brain Imaging Behav 7(3):260–273
Witt ST, Laird AR, Meyerand ME (2008) Functional neuroimaging correlates of finger-tapping task variations: an ALE meta-analysis. Neuroimage 42(1):343–356
Zapparoli L, Seghezzi S, Paulesu E (2017) The what, the when, and the whether of intentional action in the brain: a meta-analytical review. Front Hum Neurosci 11:238
Acknowledgements
Preparation of this work was supported by a Career Development Chair from Wayne State University, the Charles H. Gershenson Distinguished Faculty Fellowship from Wayne State University, the Lyckaki-Young Fund from the State of Michigan, the Prechter Family Bipolar Foundation, the Children’s Hospital of Michigan Foundation, the Children’s Research Center of Michigan, the Cohen Neuroscience Endowment, the Dorsey Endowment, a Medical Student Internship from the Detroit Medical Center, and the National Institute of Mental Health (MH 59299).
Author information
Authors and Affiliations
Corresponding author
Additional information
Handling Editor: Fabrizio De Vico Fallani.
Rights and permissions
About this article
Cite this article
Morris, A., Ravishankar, M., Pivetta, L. et al. Response Hand and Motor Set Differentially Modulate the Connectivity of Brain Pathways During Simple Uni-manual Motor Behavior. Brain Topogr 31, 985–1000 (2018). https://doi.org/10.1007/s10548-018-0664-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10548-018-0664-5