Advertisement

Brain Topography

, Volume 31, Issue 6, pp 1014–1028 | Cite as

Optical Mapping of Brain Activation and Connectivity in Occipitotemporal Cortex During Chinese Character Recognition

  • Zhishan Hu
  • Juan ZhangEmail author
  • Tania Alexandra Couto
  • Shiyang Xu
  • Ping Luan
  • Zhen YuanEmail author
Original Paper

Abstract

In this study, functional near-infrared spectroscopy (fNIRS) was used to examine the brain activation and connectivity in occipitotemporal cortex during Chinese character recognition (CCR). Eighteen healthy participants were recruited to perform a well-designed task with three categories of stimuli (real characters, pseudo characters, and checkerboards). By inspecting the brain activation difference and its relationship with behavioral data, the left laterality during CCR was clearly identified in the Brodmann area (BA) 18 and 19. In addition, our novel findings also demonstrated that the bilateral superior temporal gyrus (STG), bilateral BA 19, and left fusiform gyrus were also involved in high-level lexical information processing such as semantic and phonological ones. Meanwhile, by examining functional brain networks, we discovered that the right BA 19 exhibited enhanced brain connectivity. In particular, the connectivity in the right fusiform gyrus, right BA 19, and left STG showed significant correlation with the performance of CCR. Consequently, the combination of fNIRS technique with functional network analysis paves a new avenue for improved understanding of the cognitive mechanism underlying CCR.

Keywords

Chinese character recognition fNIRS Visual word form Brain connectivity 

Notes

Acknowledgements

This study was supported by MYRG2014-00093-FHS, MYRG2015-00036-FHS, MYRG2016-00110-FHS, MYRG2015-00221-FED, MYRG2016-00193-FED, MYRG2017-00217-FED grants from the University of Macau in Macau, and FDCT 026/2014/A1 and FDCT 025/2015/A1 grants from Macao government. Z.Y., J.Z., and Z.H. designed research and wrote the paper; Z.H. and S.X. performed research and analyzed data; T.A.C. double checked the data, proofread the manuscript, and discussed with the authors during the revision; P.L. joined the discussion during the revision and provided professional opinion as an expert in neurology. We gratefully acknowledge the constructive comments from the anonymous reviewer, which help significantly improve the quality of this manuscript.

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

References

  1. Bentin S, Mouchetant-Rostaing Y, Giard MH et al (1999) ERP manifestations of processing printed words at different psycholinguistic levels: time course and scalp distribution. J Cogn Neurosci 11:235–260.  https://doi.org/10.1162/089892999563373 CrossRefPubMedGoogle Scholar
  2. Bolger DJ, Perfetti CA, Schneider W (2005) Cross-cultural effect on the brain revisited: universal structures plus writing system variation. Hum Brain Mapp 25:92–104.  https://doi.org/10.1002/hbm.20124 CrossRefPubMedGoogle Scholar
  3. Cai Q, Brysbaert M (2010) SUBTLEX-CH: Chinese word and character frequencies based on film subtitles. PLoS ONE 5:e10729.  https://doi.org/10.1371/journal.pone.0010729 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chou TL, Booth JR, Bitan T et al (2006) Developmental and skill effects on the neural correlates of semantic processing to visually presented words. Hum Brain Mapp 27:915–924.  https://doi.org/10.1002/hbm.20231 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cohen L, Dehaene S, Naccache L et al (2000) The visual word form area. Brain 123:291–307.  https://doi.org/10.1093/brain/123.2.291 CrossRefPubMedGoogle Scholar
  6. Coltheart M, Rastle K, Perry C et al (2001) DRC: A dual route cascaded model of visual word recognition and reading aloud. Psychol Rev 108:204–256.  https://doi.org/10.1037/0033-295X.108.1.204 CrossRefPubMedGoogle Scholar
  7. Dehaene S, Cohen L (2011) The unique role of the visual word form area in reading. Trends Cogn Sci 15:254–262.  https://doi.org/10.1016/j.tics.2011.04.003 CrossRefPubMedGoogle Scholar
  8. Dehaene S, Le Clec’H G, Poline J-B et al (2002) The visual word form area: a prelexical representation of visual words in the fusiform gyrus. Neuroreport 13:321–325.  https://doi.org/10.1097/00001756-200203040-00015 CrossRefPubMedGoogle Scholar
  9. Dieler AC, Tupak SV, Fallgatter AJ (2012) Functional near-infrared spectroscopy for the assessment of speech related tasks. Brain Lang 121:90–109.  https://doi.org/10.1016/j.bandl.2011.03.005 CrossRefPubMedGoogle Scholar
  10. Dietz NAE, Jones KM, Gareau L et al (2005) Phonological decoding involves left posterior fusiform gyrus. Hum Brain Mapp 26:81–93.  https://doi.org/10.1002/hbm.20122 CrossRefPubMedGoogle Scholar
  11. Ding XP, Gao X, Fu G, Lee K (2013) Neural correlates of spontaneous deception: a functional near-infrared spectroscopy (fNIRS)study. Neuropsychologia 51:704–712.  https://doi.org/10.1016/j.neuropsychologia.2012.12.018 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Ding XP, Sai L, Fu G et al (2014) Neural correlates of second-order verbal deception: a functional near-infrared spectroscopy (fNIRS) study. Neuroimage 87:505–514.  https://doi.org/10.1016/j.neuroimage.2013.10.023 CrossRefPubMedGoogle Scholar
  13. Ferrari M, Quaresima V (2012) A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application. Neuroimage 63:921–935CrossRefPubMedGoogle Scholar
  14. Fu G, Mondloch CJ, Ding XP et al (2014) The neural correlates of the face attractiveness aftereffect: a functional near-infrared spectroscopy (fNIRS) study. Neuroimage 85:363–371.  https://doi.org/10.1016/j.neuroimage.2013.04.092 CrossRefPubMedGoogle Scholar
  15. Gan Z, Li C, Gong H et al (2003) On children’s dyslexia with NIRS. In: Luo Q, Tuchin VV, Gu M, Wang LV (eds) Proceedings of the SPIE, vol 5254. p 521Google Scholar
  16. Hsiao JH w, Shillcock R, Lee C (2007) Neural correlates of foveal splitting in reading: Evidence from an ERP study of Chinese character recognition. Neuropsychologia 45:1280–1292.  https://doi.org/10.1016/j.neuropsychologia.2006.10.001 CrossRefPubMedGoogle Scholar
  17. Krafnick AJ, Tan L-H, Flowers DL et al (2016) Chinese character and English word processing in children’s ventral occipitotemporal cortex: fMRI evidence for script invariance. Neuroimage 133:302–312.  https://doi.org/10.1016/j.neuroimage.2016.03.021 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647.  https://doi.org/10.1146/annurev.psych.093008.131123 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Lancaster JL, Woldorff MG, Parsons LM, et al (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10:120–131CrossRefPubMedGoogle Scholar
  20. Lee C-Y, Tsai J-L, Chan W-H et al (2007) Temporal dynamics of the consistency effect in reading Chinese: an event-related potentials study. Neuroreport 18:147–151.  https://doi.org/10.1097/WNR.0b013e328010d4e4 CrossRefPubMedGoogle Scholar
  21. Liu Y, Perfetti CA (2003) The time course of brain activity in reading English and Chinese: an ERP study of Chinese bilinguals. Hum Brain Mapp 18:167–175.  https://doi.org/10.1002/hbm.10090 CrossRefPubMedGoogle Scholar
  22. McDermott KB, Petersen SE, Watson JM, Ojemann JG (2003) A procedure for identifying regions preferentially activated by attention to semantic and phonological relations using functional magnetic resonance imaging. Neuropsychologia 41:293–303.  https://doi.org/10.1016/S0028-3932(02)00162-8 CrossRefPubMedGoogle Scholar
  23. Oi M, Saito H, Ito H, Rumme PL (2010) Semantic judgment of Chinese–Japanese bilinguals: a near-infrared spectroscopy study. Neuroreport 21:127–131.  https://doi.org/10.1097/WNR.0b013e328334f235 CrossRefPubMedGoogle Scholar
  24. Perfetti CA, Liu Y, Tan LH (2005) The lexical constituency model: some implications of research on Chinese for general theories of reading. Psychol Rev 112:43–59.  https://doi.org/10.1037/0033-295X.112.1.43 CrossRefPubMedGoogle Scholar
  25. Rossi S, Telkemeyer S, Wartenburger I, Obrig H (2012) Shedding light on words and sentences: near-infrared spectroscopy in language research. Brain Lang 121:152–163.  https://doi.org/10.1016/j.bandl.2011.03.008 CrossRefPubMedGoogle Scholar
  26. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069.  https://doi.org/10.1016/j.neuroimage.2009.10.003 CrossRefPubMedGoogle Scholar
  27. Scholkmann F, Spichtig S, Muehlemann T, Wolf M (2010) How to detect and reduce movement artifacts in near-infrared imaging using moving standard deviation and spline interpolation. Physiol Meas 31:649–662.  https://doi.org/10.1088/0967-3334/31/5/004 CrossRefPubMedGoogle Scholar
  28. Strangman G, Culver JP, Thompson JH, Boas DA (2002) A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17:719–731.  https://doi.org/10.1016/S1053-8119(02)91227-9 CrossRefPubMedGoogle Scholar
  29. Sun J, Zhai J, Song R et al (2011) Reduced prefrontal cortex activation in the color-word Stroop task for Chinese dyslexic children: a near-infrared spectroscopy study. J Phys Conf Ser 277:12034.  https://doi.org/10.1088/1742-6596/277/1/012034 CrossRefGoogle Scholar
  30. Tan LH, Liu HL, Perfetti CA et al (2001) The neural system underlying Chinese logograph reading. Neuroimage 13:836–846.  https://doi.org/10.1006/nimg.2001.0749 CrossRefPubMedGoogle Scholar
  31. Tan LH, Laird AR, Li K, Fox PT (2005) Neuroanatomical correlates of phonological processing of Chinese characters and alphabetic words: a meta-analysis. Hum Brain Mapp 25:83–91.  https://doi.org/10.1002/hbm.20134 CrossRefPubMedGoogle Scholar
  32. van de Rijt LPH, van Opstal AJ, Mylanus EAM et al (2016) Temporal cortex activation to audiovisual speech in normal-hearing and cochlear implant users measured with functional near-infrared spectroscopy. Front Hum Neurosci 10:48.  https://doi.org/10.3389/fnhum.2016.00048 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Vorobyev VA, Alho K, Medvedev SV et al (2004) Linguistic processing in visual and modality-nonspecific brain areas: PET recordings during selective attention. Cogn Brain Res 20:309–322.  https://doi.org/10.1016/j.cogbrainres.2004.03.011 CrossRefGoogle Scholar
  34. Wu CY, Ho MHR, Chen SHA (2012) A meta-analysis of fMRI studies on Chinese orthographic, phonological, and semantic processing. Neuroimage 63:381–391.  https://doi.org/10.1016/j.neuroimage.2012.06.047 CrossRefPubMedGoogle Scholar
  35. Xia M, Wang J, He Y (2013) BrainNet viewer: a network visualization tool for human brain connectomics. PLoS ONE 8:e68910.  https://doi.org/10.1371/journal.pone.0068910 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Xue G, Jiang T, Chen C, Dong Q (2008) Language experience shapes early electrophysiological responses to visual stimuli: the effects of writing system, stimulus length, and presentation duration. Neuroimage 39:2025–2037.  https://doi.org/10.1016/j.neuroimage.2007.10.021 CrossRefPubMedGoogle Scholar
  37. Yang C, Tang D, Atluri S (2010) Three-dimensional carotid plaque progression simulation using meshless generalized finite difference method based on multi-year MRI patient-tracking data. Comput Model Eng Sci 57:51–76.  https://doi.org/10.1016/j.drugalcdep.2008.02.002.A CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ye JC, Tak S, Jang KE et al (2009) NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage 44:428–447.  https://doi.org/10.1016/j.neuroimage.2008.08.036 CrossRefPubMedGoogle Scholar
  39. Yuan Z (2013) Combining independent component analysis and Granger causality to investigate brain network dynamics with fNIRS measurements. Biomed Opt Express 4:2629.  https://doi.org/10.1364/BOE.4.002629 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Yuan Z (2014) Combining ICA and Granger causality: a novel tool for investigation of brain dynamics and brain oscillations using fNIRS measurements. In: Hirschberg H, Madsen SJ, Jansen ED (eds) Proceedings of SPIE. p 89280IGoogle Scholar
  41. Yuan Z, Ye J (2013) Fusion of fNIRS and fMRI data: identifying when and where hemodynamic signals are changing in human brains. Front Hum Neurosci 7:676.  https://doi.org/10.3389/fnhum.2013.00676 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhang ZL, Li T, Zheng Y et al (2006) Study the left prefrontal cortex activity of Chinese children with dyslexia in phonological processing by MRS—Article no. 607833. Proceedings of photonic therapeutics and diagnostics II. vol 6078. pp 7833–7833, r565Google Scholar
  43. Zhang H, Zhang YJ, Lu CM et al (2010) Functional connectivity as revealed by independent component analysis of resting-state fNIRS measurements. Neuroimage 51:1150–1161.  https://doi.org/10.1016/j.neuroimage.2010.02.080 CrossRefPubMedGoogle Scholar
  44. Zhang JX, Fang Z, Du YC et al (2012) Centro-parietal N200: an event-related potential component specific to Chinese visual word recognition. Chin Sci Bull 57:1516–1532.  https://doi.org/10.1007/s11434-011-4932-y CrossRefGoogle Scholar
  45. Zhang J, Lin X, Fu G et al (2016) Mapping the small-world properties of brain networks in deception with functional near-infrared spectroscopy. Sci Rep 6:25297.  https://doi.org/10.1038/srep25297 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Bioimaging Core, Faculty of Health SciencesUniversity of MacauMacauChina
  2. 2.Faculty of EducationUniversity of MacauMacauChina
  3. 3.Shenzhen University Health Science CenterShenzhenChina

Personalised recommendations