Advertisement

Brain Topography

, Volume 31, Issue 3, pp 419–429 | Cite as

40 Hz Auditory Steady-State Response: The Impact of Handedness and Gender

  • Sigita Melynyte
  • Evaldas Pipinis
  • Vaida Genyte
  • Aleksandras Voicikas
  • Tonia Rihs
  • Inga Griskova-Bulanova
Original Paper
  • 232 Downloads

Abstract

The 40 Hz auditory steady-state response (ASSR) is a periodic response to a periodic stimulation. Its sources are located in the primary auditory cortex and the asymmetry of the planum temporale has previously been associated with hand preference and gender-related differences; thus subject’s handedness and gender could potentially influence ASSRs. Nevertheless, electrophysiological studies of ASSRs are mainly dominated by right-handed participants and the observed findings can only be generalized to the right-handed populations. However, for a potential use of 40 Hz ASSR as a translational biomarker of neuropsychiatric disorders, it is important to investigate the response in association to handedness and gender. We included an equal number of left-handed and right-handed males and females and recorded EEG responses during left-ear, right-ear and both ears stimulation. The results of the study suggest that the processing of 40 Hz auditory stimulation depends on the subjects’ gender and handedness: significantly lower phase-locking and strength of 40 Hz ASSRs were observed in left-handed females as compared to left-handed males, but right-handers did not differ in 40 Hz ASSRs. Our observation of the opposite impact of gender in the examined handedness groups stresses the importance of careful consideration of handedness and gender factors when evaluating the determinants of inter individual variability of 40 Hz ASSRs. This finding is of particular importance for clinical studies in psychiatry and neurology.

Keywords

Auditory steady-state response 40 Hz Gender Handedness 

Notes

Acknowledgements

The research was supported by the project “State-dependent information processing: implementation of electrical neuroimaging approach in Lithuania” (CH-3-ŠMM-02/03) within the framework the Lithuanian-Swiss cooperation program “Research and development”. The authors would like to thank all study volunteers for their participation.

Compliance with Ethical Standards

Conflict of interest

The Authors declare that there is no conflict of interest.

Supplementary material

10548_2017_611_MOESM1_ESM.docx (22 kb)
Supplementary material 1 (DOCX 21 KB)

References

  1. Ahlfors SP, Han J, Belliveau JW, Hämäläinen MS (2010) Sensitivity of MEG and EEG to source orientation. Brain Topogr 23:227–232.  https://doi.org/10.1007/s10548-010-0154-x CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bao A-M, Swaab DF (2010) Sex differences in the brain, behavior, and neuropsychiatric disorders. Neuroscientist 16:550–565.  https://doi.org/10.1177/1073858410377005 CrossRefPubMedGoogle Scholar
  3. Barajas A, Ochoa S, Obiols JE, Lalucat-Jo L (2015) Gender differences in individuals at high-risk of psychosis: a comprehensive literature review. Sci World J 2015:430735.  https://doi.org/10.1155/2015/430735 CrossRefGoogle Scholar
  4. Bishop KM, Wahlsten D (1997) Sex differences in the human corpus callosum: myth or reality? Neurosci Biobehav Rev 21:581–601CrossRefPubMedGoogle Scholar
  5. Borod JC, Koff E, Caron HS (1984) The Target Test: a brief laterality measure of speed and accuracy. Percept Mot Skills 58:743–748.  https://doi.org/10.2466/pms.1984.58.3.743 CrossRefPubMedGoogle Scholar
  6. Brugge JF, Nourski KV, Oya H et al (2009) Coding of repetitive transients by auditory cortex on Heschl’s gyrus. J Neurophysiol 102:2358–2374.  https://doi.org/10.1152/jn.91346.2008 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Carta MG, Bhat KM, Preti A (2012) GABAergic neuroactive steroids: a new frontier in bipolar disorders? Behav Brain Funct 8:61.  https://doi.org/10.1186/1744-9081-8-61 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chen X, Liang Y, Deng Y et al (2013) Age-associated reduction of asymmetry in human central auditory function: a 1H-magnetic resonance spectroscopy study. Neural Plast 2013:735290.  https://doi.org/10.1155/2013/735290 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Clarke S, de Ribaupierre F, Bajo VM et al (1995) The auditory pathway in cat corpus callosum. Exp Brain Res 104:534–540CrossRefPubMedGoogle Scholar
  10. De Vos A, Vanvooren S, Vanderauwera J et al (2017) Atypical neural synchronization to speech envelope modulations in dyslexia. Brain Lang 164:106–117.  https://doi.org/10.1016/j.bandl.2016.10.002 CrossRefPubMedGoogle Scholar
  11. Deep-Soboslay A, Hyde TM, Callicott JP et al (2010) Handedness, heritability, neurocognition and brain asymmetry in schizophrenia. Brain 133:3113–3122.  https://doi.org/10.1093/brain/awq160 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21.  https://doi.org/10.1016/j.jneumeth.2003.10.009 CrossRefPubMedGoogle Scholar
  13. Delvecchio G, Pigoni A, Perlini C et al (2017) Sexual dimorphism of the planum temporale in schizophrenia: a MRI study. Aust N Z J Psychiatry 486741770274.  https://doi.org/10.1177/0004867417702748
  14. Draganova R, Ross B, Wollbrink A, Pantev C (2008) Cortical steady-state responses to central and peripheral auditory beats. Cereb Cortex 18:1193–1200.  https://doi.org/10.1093/cercor/bhm153 CrossRefPubMedGoogle Scholar
  15. Edgar JC, Fisk IVCL., Chen Y-H et al (2017) By our bootstraps: comparing methods for measuring auditory 40 Hz steady-state neural activity. Psychophysiology.  https://doi.org/10.1111/psyp.12876 PubMedGoogle Scholar
  16. Foundas AL, Leonard CM, Heilman KM (1995) Morphologic cerebral asymmetries and handedness. The pars triangularis and planum temporale. Arch Neurol 52:501–508CrossRefPubMedGoogle Scholar
  17. Galaburda A, Sanides F (1980) Cytoarchitectonic organization of the human auditory cortex. J Comp Neurol 190:597–610.  https://doi.org/10.1002/cne.901900312 CrossRefPubMedGoogle Scholar
  18. Galambos R, Makeig S, Talmachoff PJ (1981) A 40-Hz auditory potential recorded from the human scalp. Proc Natl Acad Sci USA 78:2643–2647CrossRefPubMedPubMedCentralGoogle Scholar
  19. Gonzalez-Burgos G, Lewis DA (2008) GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull 34:944–961.  https://doi.org/10.1093/schbul/sbn070 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Gransier R, van Wieringen A, Wouters J (2017) Binaural interaction effects of 30–50 Hz auditory steady state responses. Ear Hear.  https://doi.org/10.1097/AUD.0000000000000429 PubMedGoogle Scholar
  21. Griskova-Bulanova I, Griksiene R, Korostenskaja M, Ruksenas O (2014) 40 Hz auditory steady-state response in females: when is it better to entrain? Acta Neurobiol Exp 74:91–97Google Scholar
  22. Griskova-Bulanova I, Hubl D, van Swam C et al (2016) Early- and late-latency gamma auditory steady-state response in schizophrenia during closed eyes: does hallucination status matter? Clin Neurophysiol 127:2214–2221.  https://doi.org/10.1016/j.clinph.2016.02.009 CrossRefPubMedGoogle Scholar
  23. Gutschalk A, Mase R, Roth R et al (1999) Deconvolution of 40 Hz steady-state fields reveals two overlapping source activities of the human auditory cortex. Clin Neurophysiol 110:856–868CrossRefPubMedGoogle Scholar
  24. Harris LJ (1990) Cultural influences on handedness: historical and contemporary theory and evidence. In: Stelmach GE, Vroon PA, Coren S (eds) Advances in psychology, Left-handedness: behavioral implications and anomalies, vol 67. North-Holland, New York, NY, pp 195–258Google Scholar
  25. Hausmann M, Behrendt-Körbitz S, Kautz H et al (1998) Sex differences in oral asymmetries during wordrepetition. Neuropsychologia 36:1397–1402CrossRefPubMedGoogle Scholar
  26. Hellige JB (2001) Hemispheric asymmetry: what’s right and what’s left. Harvard University Press, CambridgeGoogle Scholar
  27. Hervé P-Y, Crivello F, Perchey G et al (2006) Handedness and cerebral anatomical asymmetries in young adult males. Neuroimage 29:1066–1079.  https://doi.org/10.1016/j.neuroimage.2005.08.031 CrossRefPubMedGoogle Scholar
  28. Hill NJ, Schölkopf B (2012) An online brain-computer interface based on shifting attention to concurrent streams of auditory stimuli. J Neural Eng 9:26011.  https://doi.org/10.1088/1741-2560/9/2/026011 CrossRefGoogle Scholar
  29. Hirnstein M, Hugdahl K (2014) Excess of non-right-handedness in schizophrenia: meta-analysis of gender effects and potential biases in handedness assessment. Br J Psychiatry 205:260–267.  https://doi.org/10.1192/bjp.bp.113.137349 CrossRefPubMedGoogle Scholar
  30. Holinger DP, Shenton ME, Wible CG et al (1999) Superior temporal gyrus volume abnormalities and thought disorder in left-handed schizophrenic men. Am J Psychiatry 156:1730–1735.  https://doi.org/10.1176/ajp.156.11.1730 PubMedPubMedCentralGoogle Scholar
  31. Huang GZ, Woolley CS (2012) Estradiol acutely suppresses inhibition in the hippocampus through a sex-specific endocannabinoid and mGluR-dependent mechanism. Neuron 74:801–808.  https://doi.org/10.1016/j.neuron.2012.03.035 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kirihara K, Rissling AJ, Swerdlow NR et al (2012) Hierarchical organization of gamma and theta oscillatory dynamics in schizophrenia. Biol Psychiatry 71:873–880.  https://doi.org/10.1016/j.biopsych.2012.01.016 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Knecht S, Dräger B, Deppe M et al (2000) Handedness and hemispheric language dominance in healthy humans. Brain 123(Pt 12):2512–2518CrossRefPubMedGoogle Scholar
  34. Lamminmäki S, Parkkonen L, Hari R (2014) Human neuromagnetic steady-state responses to amplitude-modulated tones, speech, and music. Ear Hear 35:461–467.  https://doi.org/10.1097/AUD.0000000000000033 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Larsen KM, Pellegrino G, Birknow MR et al (2017) 22q11.2 Deletion syndrome Is associated with impaired auditory steady-state gamma response. Schizophr Bull.  https://doi.org/10.1093/schbul/sbx058 PubMedCentralGoogle Scholar
  36. Lazzouni L, Voss P, Lepore F (2012) Short-term crossmodal plasticity of the auditory steady-state response in blindfolded sighted individuals. Eur J Neurosci 35:1630–1636.  https://doi.org/10.1111/j.1460-9568.2012.08088.x CrossRefPubMedGoogle Scholar
  37. Light GA, Hsu JL, Hsieh MH et al (2006) Gamma band oscillations reveal neural network cortical coherence dysfunction in schizophrenia patients. Biol Psychiatry 60:1231–1240.  https://doi.org/10.1016/j.biopsych.2006.03.055 CrossRefPubMedGoogle Scholar
  38. Luke R, De Vos A, Wouters J (2017) Source analysis of auditory steady-state responses in acoustic and electric hearing. Neuroimage 147:568–576.  https://doi.org/10.1016/j.neuroimage.2016.11.023 CrossRefPubMedGoogle Scholar
  39. Mahajan Y, Davis C, Kim J (2014) Attentional modulation of auditory steady-state responses. PLoS ONE 9:e110902.  https://doi.org/10.1371/journal.pone.0110902 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Mäkelä JP, Hari R (1987) Evidence for cortical origin of the 40 Hz auditory evoked response in man. Electroencephalogr Clin Neurophysiol 66:539–546CrossRefPubMedGoogle Scholar
  41. Miller JW, Jayadev S, Dodrill CB, Ojemann GA (2005) Gender differences in handedness and speech lateralization related to early neurologic insults. Neurology 65:1974–1975.  https://doi.org/10.1212/01.wnl.0000188900.91741.ea CrossRefPubMedGoogle Scholar
  42. Milner B, Taylor L, Sperry RW (1968) Lateralized suppression of dichotically presented digits after commissural section in man. Science 161:184–186CrossRefPubMedGoogle Scholar
  43. Mørup M, Hansen LK, Arnfred SM (2007) ERPWAVELAB a toolbox for multi-channel analysis of time-frequency transformed event related potentials. J Neurosci Methods 161:361–368.  https://doi.org/10.1016/j.jneumeth.2006.11.008 CrossRefPubMedGoogle Scholar
  44. Mulert C, Kirsch V, Pascual-Marqui R et al (2011) Long-range synchrony of gamma oscillations and auditory hallucination symptoms in schizophrenia. Int J Psychophysiol 79:55–63.  https://doi.org/10.1016/j.ijpsycho.2010.08.004 CrossRefPubMedGoogle Scholar
  45. Müller N, Schlee W, Hartmann T et al (2009) Top-down modulation of the auditory steady-state response in a task-switch paradigm. Front Hum Neurosci 3:1.  https://doi.org/10.3389/neuro.09.001.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Negrev N, Nikolova P, Nikolova R (2000) Serum levels of female sex hormones in left-handed and right-handed menopausal women. Laterality 5:69–75.  https://doi.org/10.1080/713754352 CrossRefPubMedGoogle Scholar
  47. O’Donnell BF, Vohs JL, Krishnan GP et al (2013) The auditory steady-state response (ASSR): a translational biomarker for schizophrenia. Suppl Clin Neurophysiol 62:101–112CrossRefPubMedPubMedCentralGoogle Scholar
  48. Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9:97–113CrossRefPubMedGoogle Scholar
  49. Pantev C, Roberts LE, Elbert T et al (1996) Tonotopic organization of the sources of human auditory steady-state responses. Hear Res 101:62–74.  https://doi.org/10.1016/S0378-5955(96)00133-5 CrossRefPubMedGoogle Scholar
  50. Pastor MA, Artieda J, Arbizu J et al (2002) Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci 22:10501–10506PubMedGoogle Scholar
  51. Penhune VB, Zatorre RJ, MacDonald JD, Evans AC (1996) Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672CrossRefPubMedGoogle Scholar
  52. Penhune VB, Zatorre RJ, MacDonald JD, Evans AC Interhemispheric anatomical differences in human primary auditory cortex: probabilistic mapping and volume measurement from magnetic resonance scans. Cereb Cortex 6:661–672Google Scholar
  53. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187CrossRefPubMedGoogle Scholar
  54. Peters M, Reimers S, Manning JT (2006) Hand preference for writing and associations with selected demographic and behavioral variables in 255,100 subjects: the BBC internet study. Brain Cogn 62:177–189.  https://doi.org/10.1016/j.bandc.2006.04.005 CrossRefPubMedGoogle Scholar
  55. Picton TW, John MS, Dimitrijevic A, Purcell D (2003) Human auditory steady-state responses. Int J Audiol 42:177–219CrossRefPubMedGoogle Scholar
  56. Poelmans H, Luts H, Vandermosten M et al (2012) Hemispheric asymmetry of auditory steady-state responses to monaural and diotic stimulation. J Assoc Res Otolaryngol 13:867–876.  https://doi.org/10.1007/s10162-012-0348-x CrossRefPubMedPubMedCentralGoogle Scholar
  57. Rademacher J, Morosan P, Schleicher A et al (2001) Human primary auditory cortex in women and men. Neuroreport 12:1561–1565CrossRefPubMedGoogle Scholar
  58. Rass O, Krishnan G, Brenner CA et al (2010) Auditory steady state response in bipolar disorder: relation to clinical state, cognitive performance, medication status, and substance disorders. Bipolar Disord 12:793–803.  https://doi.org/10.1111/j.1399-5618.2010.00871.x CrossRefPubMedPubMedCentralGoogle Scholar
  59. Ravichandran C, Shinn AK, Öngür D et al (2017) Frequency of non-right-handedness in bipolar disorder and schizophrenia. Psychiatry Res 253:267–269.  https://doi.org/10.1016/j.psychres.2017.04.011 CrossRefPubMedGoogle Scholar
  60. Reite M, Teale P, Rojas DC et al (2009) MEG auditory evoked fields suggest altered structural/functional asymmetry in primary but not secondary auditory cortex in bipolar disorder. Bipolar Disord 11:371–381.  https://doi.org/10.1111/j.1399-5618.2009.00701.x CrossRefPubMedPubMedCentralGoogle Scholar
  61. Ribolsi M, Daskalakis ZJ, Siracusano A, Koch G (2014) Abnormal asymmetry of brain connectivity in schizophrenia. Front Hum Neurosci 8:1010.  https://doi.org/10.3389/fnhum.2014.01010 CrossRefPubMedPubMedCentralGoogle Scholar
  62. Risse GL, Gates J, Lund G et al (1989) Interhemispheric transfer in patients with incomplete section of the corpus callosum. Anatomic verification with magnetic resonance imaging. Arch Neurol 46:437–443CrossRefPubMedGoogle Scholar
  63. Rivier F, Clarke S (1997) Cytochrome oxidase, acetylcholinesterase, and NADPH-diaphorase staining in human supratemporal and insular cortex: evidence for multiple auditory areas. Neuroimage 6:288–304.  https://doi.org/10.1006/nimg.1997.0304 CrossRefPubMedGoogle Scholar
  64. Rojas DC, Teale PD, Maharajh K et al (2011) Transient and steady-state auditory gamma-band responses in first-degree relatives of people with autism spectrum disorder. Mol Autism 2:11CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ross B, Herdman AT, Pantev C (2005) Right hemispheric laterality of human 40 Hz auditory steady-state responses. Cereb Cortex 15:2029–2039.  https://doi.org/10.1093/cercor/bhi078 CrossRefPubMedGoogle Scholar
  66. Royer C, Delcroix N, Leroux E et al (2015) Functional and structural brain asymmetries in patients with schizophrenia and bipolar disorders. Schizophr Res 161:210–214.  https://doi.org/10.1016/j.schres.2014.11.014 CrossRefPubMedGoogle Scholar
  67. Rubens AB, Froehling B, Slater G, Anderson D (1985) Left ear suppression on verbal dichotic tests in patients with multiple sclerosis. Ann Neurol 18:459–463.  https://doi.org/10.1002/ana.410180408 CrossRefPubMedGoogle Scholar
  68. Sánchez MG, Bourque M, Morissette M, Di Paolo T (2010) Steroids-dopamine interactions in the pathophysiology and treatment of CNS disorders. CNS Neurosci Ther 16:e43–e71.  https://doi.org/10.1111/j.1755-5949.2010.00163.x CrossRefPubMedGoogle Scholar
  69. Saugstad LF (1998) Cerebral lateralisation and rate of maturation. Int J Psychophysiol 28:37–62CrossRefPubMedGoogle Scholar
  70. Schonwiesner M, Krumbholz K, Rubsamen R et al (2006) Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. Cereb Cortex 17:492–499.  https://doi.org/10.1093/cercor/bhj165 CrossRefPubMedGoogle Scholar
  71. Shaw ME, Hämäläinen MS, Gutschalk A (2013) How anatomical asymmetry of human auditory cortex can lead to a rightward bias in auditory evoked fields. Neuroimage 74:22–29.  https://doi.org/10.1016/j.neuroimage.2013.02.002 CrossRefPubMedGoogle Scholar
  72. Sommer I, Ramsey N, Kahn R et al (2001) Handedness, language lateralisation and anatomical asymmetry in schizophrenia. Br J Psychiatry 178:344–351CrossRefPubMedGoogle Scholar
  73. Sommer IE, Aleman A, Somers M et al (2008) Sex differences in handedness, asymmetry of the planum temporale and functional language lateralization. Brain Res 1206:76–88.  https://doi.org/10.1016/j.brainres.2008.01.003 CrossRefPubMedGoogle Scholar
  74. Spencer KM, Salisbury DF, Shenton ME, McCarley RW (2008) Gamma-band auditory steady-state responses are impaired in first episode psychosis. Biol Psychiatry 64:369–375.  https://doi.org/10.1016/j.biopsych.2008.02.021 CrossRefPubMedPubMedCentralGoogle Scholar
  75. Spencer KM, Niznikiewicz MA, Nestor PG et al (2009) Left auditory cortex gamma synchronization and auditory hallucination symptoms in schizophrenia. BMC Neurosci 10:85.  https://doi.org/10.1186/1471-2202-10-85 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Sugishita M, Otomo K, Yamazaki K et al (1995) Dichotic listening in patients with partial section of the corpus callosum. Brain 118(Pt 2):417–427CrossRefPubMedGoogle Scholar
  77. Tada M, Nagai T, Kirihara K et al (2016) Differential alterations of auditory gamma oscillatory responses between pre-onset high-risk individuals and first-episode schizophrenia. Cereb Cortex 26:1027–1035.  https://doi.org/10.1093/cercor/bhu278 CrossRefPubMedGoogle Scholar
  78. Tan H-RM, Gross J, Uhlhaas PJ (2015) MEG—measured auditory steady-state oscillations show high test–retest reliability: a sensor and source-space analysis. Neuroimage 122:417–426.  https://doi.org/10.1016/j.neuroimage.2015.07.055 CrossRefPubMedGoogle Scholar
  79. Teale P, Carlson J, Rojas D, Reite M (2003) Reduced laterality of the source locations for generators of the auditory steady-state field in schizophrenia. Biol Psychiatry 54:1149–1153CrossRefPubMedGoogle Scholar
  80. Thuné H, Recasens M, Uhlhaas PJ (2016) The 40-Hz auditory steady-state response in patients with schizophrenia: a meta-analysis. JAMA Psychiatry.  https://doi.org/10.1001/jamapsychiatry.2016.2619 PubMedGoogle Scholar
  81. Tsuchimoto R, Kanba S, Hirano S et al (2011) Reduced high and low frequency gamma synchronization in patients with chronic schizophrenia. Schizophr Res 133:99–105.  https://doi.org/10.1016/j.schres.2011.07.020 CrossRefPubMedGoogle Scholar
  82. Wallace MN, Harper MS (1997) Callosal connections of the ferret primary auditory cortex. Exp Brain Res 116:367–374CrossRefPubMedGoogle Scholar
  83. Wang Y, Feng Y, Jia Y et al (2013) Absence of auditory M100 source asymmetry in schizophrenia and bipolar disorder: a MEG study. PLoS ONE 8:e82682.  https://doi.org/10.1371/journal.pone.0082682 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Weafer J, de Wit H (2014) Sex differences in impulsive action and impulsive choice. Addict Behav 39:1573–1579.  https://doi.org/10.1016/j.addbeh.2013.10.033 CrossRefPubMedGoogle Scholar
  85. Westerhausen R, Kreuder F, Sequeira SDS et al (2004) Effects of handedness and gender on macro- and microstructure of the corpus callosum and its subregions: a combined high-resolution and diffusion-tensor MRI study. Cogn Brain Res 21:418–426.  https://doi.org/10.1016/j.cogbrainres.2004.07.002 CrossRefGoogle Scholar
  86. Yamasaki T, Goto Y, Taniwaki T et al (2005) Left hemisphere specialization for rapid temporal processing: a study with auditory 40 Hz steady-state responses. Clin Neurophysiol 116:393–400.  https://doi.org/10.1016/j.clinph.2004.08.005 CrossRefPubMedGoogle Scholar
  87. Zakaria MN, Jalaei B, Abdul Wahab NA (2016) Gender and modulation frequency effects on auditory steady state response (ASSR) thresholds. Eur Arch Oto-Rhino-Laryngol 273:349–354.  https://doi.org/10.1007/s00405-015-3555-3 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Institute of Biosciences, Life Sciences CentreVilnius UniversityVilniusLithuania
  2. 2.Department of Fundamental NeurosciencesUniversity of GenevaGenevaSwitzerland

Personalised recommendations