Skip to main content
Log in

A Preliminary Study on Precision Image Guidance for Electrode Placement in an EEG Study

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Conventional methods for positioning electroencephalography electrodes according to the international 10/20 system are based on the manual identification of the principal 10/20 landmarks via visual inspection and palpation, inducing intersession variations in their determined locations due to structural ambiguity or poor visibility. To address the variation issue, we propose an image guidance system for precision electrode placement. Following the electrode placement according to the 10/20 system, affixed electrodes are laser-scanned together with the facial surface. For subsequent procedures, the laser scan is conducted likewise after positioning the electrodes in an arbitrary manner, and following the measurement of fiducial electrode locations, frame matching is performed to determine a transformation from the coordinate frame of the position tracker to that of the laser-scanned image. Finally, by registering the intra-procedural scan of the facial surface to the reference scan, the current tracking data of the electrodes can be visualized relative to the reference goal positions without manually measuring the four principal landmarks for each trial. The experimental results confirmed that use of the electrode navigation system significantly improved the electrode placement precision compared to the conventional 10/20 system (p < 0.005). The proposed system showed the possibility of precise image-guided electrode placement as an alternative to the conventional manual 10/20 system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arata J, Kozuka H, Kim HW et al (2010) Open core control software for surgical robots. Int J Comput Assist Radiol Surg 5:211–220

    Article  PubMed  Google Scholar 

  • Arun KS, Huang TS, Blostein SD (1987) Least-squares fitting of two 3-D point sets. IEEE Trans Pattern Anal Mach Intell 9:698–700

    Article  CAS  PubMed  Google Scholar 

  • Astolfi L, Cincotti F, Mattia D et al (2007) Comparison of different cortical connectivity estimators for high-resolution EEG recordings. Hum Brain Mapp 28:143–157

    Article  PubMed  Google Scholar 

  • Atcherson SR, Gould HJ, Pousson MA, Prout TM (2007) Variability of electrode positions using electrode caps. Brain Topogr 20:105–111

    Article  PubMed  Google Scholar 

  • Baysal U, Şengül G (2010) Single camera photogrammetry system for EEG electrode identification and localization. Ann Biomed Eng 38:1539–1547

    Article  PubMed  Google Scholar 

  • Besl PJ, McKay ND (1992) Method for registration of 3-D shapes. In: Robotics-DL tentative. pp 586–606

  • Böcker KBE, van Avermaete JAG, van den Berg-Lenssen MMC (1994) The international 10–20 system revisited: Cartesian and spherical co-ordinates. Brain Topogr 6:231–235

    Article  PubMed  Google Scholar 

  • Bradski G, Kaehler A (2008) Learning OpenCV: Computer vision with the OpenCV library. O’Reilly Media, Inc., Farnham

    Google Scholar 

  • Bulea TC, Kim J, Damiano DL et al (2015) Prefrontal, posterior parietal and sensorimotor network activity underlying speed control during walking. Front Hum Neurosci 9:247

    Article  PubMed  PubMed Central  Google Scholar 

  • Chatrian GE, Lettich E, Nelson PL (1985) Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. Am J EEG Technol 25:83–92

    Google Scholar 

  • Chatrian GE, Lettich E, Nelson PL (1988) Modified Nomenclature for the “10%” Electrode System1. J Clin Neurophysiol 5:183–186

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Medioni G (1992) Object modelling by registration of multiple range images. Image Vis Comput 10:145–155

    Article  Google Scholar 

  • Cho B, Oka M, Matsumoto N et al (2013) Warning navigation system using real-time safe region monitoring for otologic surgery. Int J Comput Assist Radiol Surg 8:395–405

    Article  PubMed  Google Scholar 

  • Coben LA, Danziger W, Storandt M (1985) A longitudinal EEG study of mild senile dementia of Alzheimer type: changes at 1 year and at 2.5 years. Electroencephalogr Clin Neurophysiol 61:101–112

    Article  CAS  PubMed  Google Scholar 

  • Committee EPN others (1994) Guideline thirteen: guidelines for standard electrode position nomenclature. J Clin Neurophysiol 11:111–113

    Article  Google Scholar 

  • Cutini S, Scatturin P, Zorzi M (2011) A new method based on ICBM152 head surface for probe placement in multichannel fNIRS. Neuroimage 54:919–927

    Article  PubMed  Google Scholar 

  • De Munck JC, Vijn PCM, Spekreijse H (1991) A practical method for determining electrode positions on the head. Electroencephalogr Clin Neurophysiol 78:85–87

    Article  PubMed  Google Scholar 

  • Deonna T, Zesiger P, Davidoff V et al (2000) Benign partial epilepsy of childhood: a longitudinal neuropsychological and EEG study of cognitive function. Dev Med Child Neurol 42:595–603

    Article  CAS  PubMed  Google Scholar 

  • Echallier JF, Perrin F, Pernier J (1992) Computer-assisted placement of electrodes on the human head. Electroencephalogr Clin Neurophysiol 82:160–163

    Article  CAS  PubMed  Google Scholar 

  • Eddelbuettel D, Sanderson C (2014) RcppArmadillo: accelerating R with high-performance C + + linear algebra. Comput Stat Data Anal 71:1054–1063

    Article  Google Scholar 

  • Egger J, Tokuda J, Chauvin L et al (2012) Integration of the OpenIGTLink Network Protocol for image-guided therapy with the medical platform MeVisLab. Int J Med Robot Comput Assist Surg 8:282–290

    Article  Google Scholar 

  • Elhawary H, Liu H, Patel P et al (2011) Intra-operative real-time querying of white matter tracts during frameless stereotactic neuronavigation. Neurosurgery 68:506

    Article  PubMed  PubMed Central  Google Scholar 

  • Figueiredo CP, Dias NS, Hoffmann K-P, Mendes PM (2008) 3D electrode localization on wireless sensor networks for wearable BCI. In: Engineering in Medicine and Biology Society, 2008. EMBS 2008. 30th Annual International Conference of the IEEE. pp 2365–2368

  • Giacometti P, Diamond SG (2013) Compliant head probe for positioning electroencephalography electrodes and near-infrared spectroscopy optodes. J Biomed Opt 18:27005

    Article  PubMed  Google Scholar 

  • He P, Estepp JR (2013) A practical method for quickly determining electrode positions in high-density EEG studies. Neurosci Lett 541:73–76

    Article  CAS  PubMed  Google Scholar 

  • Herwig U, Satrapi P, Schonfeldt-Lecuona C (2003) Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation. Brain Topogr 16:95–99

    Article  PubMed  Google Scholar 

  • Hong J, Hashizume M (2010) An effective point-based registration tool for surgical navigation. Surg Endosc 24:944–948

    Article  PubMed  Google Scholar 

  • Horn BKP (1987) Closed-form solution of absolute orientation using unit quaternions. JOSA A 4:629–642

    Article  Google Scholar 

  • Jasper H (1958) Report of the committee on methods of clinical examination in electroencephalography. Electroencephalogr Clin Neurophysiol 10:370–375

    Article  Google Scholar 

  • Jeon S, Lee GW, Jeon YD et al (2015) A preliminary study on surgical navigation for epiduroscopic laser neural decompression. Proc Inst Mech Eng H 229:693–v702

    Article  PubMed  Google Scholar 

  • Jurcak V, Okamoto M, Singh A, Dan I (2005) Virtual 10–20 measurement on MR images for inter-modal linking of transcranial and tomographic neuroimaging methods. Neuroimage 26:1184–1192

    Article  PubMed  Google Scholar 

  • Jurcak V, Tsuzuki D, Dan I (2007) 10/20, 10/10, and 10/5 systems revisited: their validity as relative head-surface-based positioning systems. Neuroimage 34:1600–1611

    Article  PubMed  Google Scholar 

  • Kähkönen S, Kesäniemi M, Nikouline VV et al (2001) Ethanol modulates cortical activity: direct evidence with combined TMS and EEG. Neuroimage 14:322–328

    Article  PubMed  Google Scholar 

  • Kavanagh KT, Clark ST (1989) Comparison of the mastoid to vertex and mastoid to high forehead electrode arrays in recording auditory evoked potentials. Ear Hear 10:259–261

    Article  CAS  PubMed  Google Scholar 

  • Kim S, Hong J, Joung S et al (2011) Dual surgical navigation using augmented and virtual environment techniques. Int J Optomechatronics 5:155–169

    Article  CAS  Google Scholar 

  • Klem GH, Luders HO, Jasper HH et al (1999) The ten-twenty electrode system of the International Federation. Electroencephalogr Clin Neurophysiol 52:3–6

    CAS  Google Scholar 

  • Koessler L, Maillard L, Benhadid A et al (2007) Spatial localization of EEG electrodes. Neurophysiol Clin Neurophysiol 37:97–102

    Article  CAS  Google Scholar 

  • Koessler L, Benhadid A, Maillard L et al (2008) Automatic localization and labeling of EEG sensors (ALLES) in MRI volume. Neuroimage 41:914–923

    Article  CAS  PubMed  Google Scholar 

  • Koessler L, Cecchin T, Ternisien E, Maillard L (2010) 3D handheld laser scanner based approach for automatic identification and localization of EEG sensors. In: Engineering in Medicine and Biology Society (EMBC), 2010 Annual International Conference of the IEEE. pp 3707–3710

  • Lagerlund TD, Sharbrough FW, Jack CR et al (1993) Determination of 10–20 system electrode locations using magnetic resonance image scanning with markers. Electroencephalogr Clin Neurophysiol 86:7–14

    Article  CAS  PubMed  Google Scholar 

  • Le J, Lu M, Pellouchoud E, Gevins A (1998) A rapid method for determining standard 10/10 electrode positions for high resolution EEG studies. Electroencephalogr Clin Neurophysiol 106:554–558

    Article  CAS  PubMed  Google Scholar 

  • Lepetit V, Moreno-Noguer F, Fua P (2009) Epnp: an accurate o (n) solution to the pnp problem. Int J Comput Vis 81:155

    Article  Google Scholar 

  • Matsumoto N, Oka M, Cho B et al (2012) Cochlear implantation assisted by noninvasive image guidance. Otol Neurotol 33:1333–1338

    Article  PubMed  Google Scholar 

  • Munoz-Salinas R (2012) ARUCO: a minimal library for Augmented Reality applications based on OpenCv

  • Myslobodsky MS, Coppola R, Bar-Ziv J, Weinberger DR (1990) Adequacy of the International 10–20 electrode system for computed neurophysiologic topography. J Clin Neurophysiol 7:507–518

    Article  CAS  PubMed  Google Scholar 

  • Nuwer MR, Comi G, Emerson R et al (1998) IFCN standards for digital recording of clinical EEG. Electroencephalogr Clin Neurophysiol 106:259–261

    Article  CAS  PubMed  Google Scholar 

  • Oostenveld R, Praamstra P (2001) The five percent electrode system for high-resolution EEG and ERP measurements. Clin Neurophysiol 112:713–719

    Article  CAS  PubMed  Google Scholar 

  • Otten P, Kim J, Son SH (2015) A framework to automate assessment of upper-limb motor function impairment: A feasibility study. Sensors 15:20097–20114

    Article  PubMed  PubMed Central  Google Scholar 

  • Qian S, Sheng Y (2011) A single camera photogrammetry system for multi-angle fast localization of EEG electrodes. Ann Biomed Eng 39:2844

    Article  PubMed  Google Scholar 

  • Reis PMR, Lochmann M (2015) Using a motion capture system for spatial localization of EEG electrodes. Front Neurosci 9:130

    Article  PubMed  PubMed Central  Google Scholar 

  • Richards JE, Boswell C, Stevens M, Vendemia JMC (2015) Evaluating methods for constructing average high-density electrode positions. Brain Topogr 28:70–86

    Article  PubMed  Google Scholar 

  • Sanderson C et al (2010) Armadillo: an open source C + + linear algebra library for fast prototyping and computationally intensive experiments

  • Schwartz D, Lemoine D, Poiseau E, Barillot C (1996) Registration of MEG/EEG data with 3D MRI: methodology and precision issues. Brain Topogr 9:101–116

    Article  Google Scholar 

  • Sitaram R, Zhang H, Guan C et al (2007) Temporal classification of multichannel near-infrared spectroscopy signals of motor imagery for developing a brain–computer interface. Neuroimage 34:1416–1427

    Article  PubMed  Google Scholar 

  • Souzaki R, Kinoshita Y, Matsuura T et al (2011) Successful resection of an undifferentiated sarcoma in a child using a real-time surgical navigation system in an open magnetic resonance imaging operation room. J Pediatr Surg 46:608–611

    Article  PubMed  Google Scholar 

  • Tauscher S, Tokuda J, Schreiber G et al (2015) OpenIGTLink interface for state control and visualisation of a robot for image-guided therapy systems. Int J Comput Assist Radiol Surg 10:285–292

    Article  PubMed  Google Scholar 

  • Tokuda J, Fischer GS, Papademetris X et al (2009) OpenIGTLink: an open network protocol for image-guided therapy environment. Int J Med Robot Comput Assist Surg 5:423–434

    Article  Google Scholar 

  • Tokuda J, Fischer GS, DiMaio SP et al (2010) Integrated navigation and control software system for MRI-guided robotic prostate interventions. Comput Med Imaging Graph 34:3–8

    Article  PubMed  Google Scholar 

  • Towle VL, Bolanos J, Suarez D et al (1993) The spatial location of EEG electrodes: locating the best-fitting sphere relative to cortical anatomy. Electroencephalogr Clin Neurophysiol 86:1–6

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi N, Tomikawa M, Uemura M et al (2013) Image-guided laparoscopic surgery in an open MRI operating theater. Surg Endosc 27:2178–2184

    Article  PubMed  Google Scholar 

  • Tsuzuki D, Watanabe H, Dan I, Taga G (2016) Minr 10/20 system: Quantitative and reproducible cranial landmark setting method for mri based on minimum initial reference points. J Neurosci Methods 264:86–93

    Article  PubMed  Google Scholar 

  • Van Olphen AF, Rodenburg M, Verwey C (1978) Distribution of brain stem responses to acoustic stimuli over the human scalp. Audiology 17:511–518

    Article  PubMed  Google Scholar 

  • Vaughan HG, Ritter W (1970) The sources of auditory evoked responses recorded from the human scalp. Electroencephalogr Clin Neurophysiol 28:360–367

    Article  PubMed  Google Scholar 

  • Wilm J (2010) Iterative Closest Point. https://www.mathworks.com/matlabcentral/fileexchange/27804-iterative-closest-point. Accessed 27 Jun 2017

  • Wood CC, Allison T (1981) Interpretation of evoked potentials: A neurophysiological perspective. Can J Psychol Can Psychol 35:113

    Article  CAS  Google Scholar 

  • Yoo S-S, Guttmann CRG, Ives JR et al (1997) 3D localization of surface 10–20 EEG electrodes on high resolution anatomical MR images. Electroencephalogr Clin Neurophysiol 102:335–339

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z (2000) A flexible new technique for camera calibration. IEEE Trans Pattern Anal Mach Intell 22:1330–1334

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the DGIST R&D Program of the Ministry of Science, ICT and Future Planning (17-BD-0401). Part of this study was reported at the Asian Conference on Computer Aided Surgery held in Singapore in 2015, at the International IEEE EMBS Conference on Neural Engineering held in Montpellier France in 2015 and at the 30th International Congress of Computer Assisted Radiology and Surgery held in Heidelberg Germany in 2016, respectively. The authors thank Hyunseok Choi, a PhD candidate from DGIST, for his valuable help on software programming.

Funding

This study was funded by the DGIST R&D Program of the Ministry of Science, ICT and Future Planning (17-BD-0401).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaesung Hong.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical Approval

For this type of study, formal approval is not required.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jeon, S., Chien, J., Song, C. et al. A Preliminary Study on Precision Image Guidance for Electrode Placement in an EEG Study. Brain Topogr 31, 174–185 (2018). https://doi.org/10.1007/s10548-017-0610-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-017-0610-y

Keywords

Navigation