Skip to main content

Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA

Abstract

Electroencephalography (EEG) oscillations reflect the superposition of different cortical sources with potentially different frequencies. Various blind source separation (BSS) approaches have been developed and implemented in order to decompose these oscillations, and a subset of approaches have been developed for decomposition of multi-subject data. Group independent component analysis (Group ICA) is one such approach, revealing spatiospectral maps at the group level with distinct frequency and spatial characteristics. The reproducibility of these distinct maps across subjects and paradigms is relatively unexplored domain, and the topic of the present study. To address this, we conducted separate group ICA decompositions of EEG spatiospectral patterns on data collected during three different paradigms or tasks (resting-state, semantic decision task and visual oddball task). K-means clustering analysis of back-reconstructed individual subject maps demonstrates that fourteen different independent spatiospectral maps are present across the different paradigms/tasks, i.e. they are generally stable.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Allen PJ, Polizzi G, Krakow K et al (1998) Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8:229–239. doi: 10.1006/nimg.1998.0361

    CAS  Article  PubMed  Google Scholar 

  2. Allen PJ, Josephs O, Turner R (2000) A method for removing imaging artifact from continuous EEG recorded during functional MRI. Neuroimage 12:230–239. doi: 10.1006/nimg.2000.0599

    CAS  Article  PubMed  Google Scholar 

  3. Allen EA, Erhardt EB, Damaraju E et al (2011) A baseline for the multivariate comparison of resting-state networks. Front Syst Neurosci 5:2. doi: 10.3389/fnsys.2011.00002

    PubMed  PubMed Central  Google Scholar 

  4. Allen EA, Erhardt EB, Wei Y et al (2012) Capturing inter-subject variability with group independent component analysis of fMRI data: a simulation study. Neuroimage 59:4141–4159. doi: 10.1016/j.neuroimage.2011.10.010

    Article  PubMed  Google Scholar 

  5. Anemüller J, Sejnowski TJ, Makeig S (2003) Complex independent component analysis of frequency-domain electroencephalographic data. Neural Netw 16:1311–1323. doi: 10.1016/j.neunet.2003.08.003

    Article  PubMed  PubMed Central  Google Scholar 

  6. Ang KK, Chin ZY, Zhang H, Guan C (2008) Filter Bank Common Spatial Pattern (FBCSP) in Brain-Computer Interface. Int Jt Conf Neural Networks. doi: 10.1109/IJCNN.2008.4634130

    Google Scholar 

  7. Bell AJ, Sejnowski TJ (1995) An information-maximization approach to blind separation and blind deconvolution. Neural Comput 7:1129–1159. doi: 10.1162/neco.1995.7.6.1129

    CAS  Article  PubMed  Google Scholar 

  8. Belouchrani A, Abed-Meraim K, Cardoso JF, Moulines E (1997) A blind source separation technique using second-order statistics. IEEE Trans Signal Process 45:434–444. doi: 10.1109/78.554307

    Article  Google Scholar 

  9. Bernat EM, Williams WJ, Gehring WJ (2005) Decomposing ERP time-frequency energy using PCA. Clin Neurophysiol 116:1314–1334. doi: 10.1016/j.clinph.2005.01.019

    Article  PubMed  Google Scholar 

  10. Brázdil M, Mikl M, Mareček R et al (2007) Effective connectivity in target stimulus processing: a dynamic causal modeling study of visual oddball task. Neuroimage 35:827–835. doi: 10.1016/j.neuroimage.2006.12.020

    Article  PubMed  Google Scholar 

  11. Bridwell DA, Calhoun V (2014) Fusing Concurrent EEG and fMRI intrinsic networks. In: Magnetoencephalography. Springer, Berlin Heidelberg, pp 213–235

    Google Scholar 

  12. Bridwell DA, Wu L, Eichele T, Calhoun VD (2013) The spatiospectral characterization of brain networks: fusing concurrent EEG spectra and fMRI maps. Neuroimage 69:101–111. doi: 10.1016/j.neuroimage.2012.12.024

    Article  PubMed  Google Scholar 

  13. Bridwell DA, Kiehl KA, Pearlson GD, Calhoun VD (2014) Patients with schizophrenia demonstrate reduced cortical sensitivity to auditory oddball regularities. Schizophr Res 158:189–194. doi: 10.1016/j.schres.2014.06.037

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bridwell DA, Steele VR, Maurer JM et al (2015) The relationship between somatic and cognitive-affective depression symptoms and error-related ERPs. J Affect Disord 172:89–95. doi: 10.1016/j.jad.2014.09.054

    Article  PubMed  Google Scholar 

  15. Bridwell DA, Rachakonda S, Silva RF et al (2016) Spatiospectral decomposition of multi-subject eeg: evaluating blind source separation algorithms on real and realistic simulated data. Brain Topogr. doi: 10.1007/s10548-016-0479-1

    PubMed  PubMed Central  Google Scholar 

  16. Buzsaki G (2006) Rhythms of the Brain. Oxford University Press, Oxford

    Book  Google Scholar 

  17. Calhoun VD, Adalı T (2012) Multisubject independent component analysis of fMRI: a decade of intrinsic networks, default mode, and neurodiagnostic discovery. IEEE Rev Biomed Eng 5:60–73. doi: 10.1109/RBME.2012.2211076

    Article  PubMed  PubMed Central  Google Scholar 

  18. Calhoun VD, Adali T, Pearlson GD, Pekar JJ (2001) A method for making group inferences from functional mri data using independent component analysis. Hum Brain Mapp 14:140–151. doi: 10.1002/hbm

    CAS  Article  PubMed  Google Scholar 

  19. Calhoun VD, Pekar JJ, Pearlson GD (2004) Alcohol intoxication effects on simulated driving: exploring alcohol-dose effects on brain activation using functional MRI. Neuropsychopharmacology 29:2097–2107. doi: 10.1038/sj.npp.1300543

    CAS  Article  PubMed  Google Scholar 

  20. Calhoun VD, Kiehl KA, Pearlson GD (2008) Modulation of temporally coherent brain networks estimated using ICA at rest and during cognitive tasks. Hum Brain Mapp 29:828–838. doi: 10.1002/hbm.20581

    Article  PubMed  PubMed Central  Google Scholar 

  21. Calhoun VD, Potluru VK, Phlypo R et al (2013) Independent component analysis for brain fMRI does indeed select for maximal independence. PLoS ONE 8:1–8. doi: 10.1371/journal.pone.0073309

    Article  Google Scholar 

  22. Cong F, He Z, Hämäläinen J et al (2013) Validating rationale of group-level component analysis based on estimating number of sources in EEG through model order selection. J Neurosci Methods 212:165–172. doi: 10.1016/j.jneumeth.2012.09.029

    Article  PubMed  Google Scholar 

  23. Congedo M, Gouy-Pailler C, Jutten C (2008) On the blind source separation of human electroencephalogram by approximate joint diagonalization of second order statistics. Clin Neurophysiol 119:2677–2686. doi: 10.1016/j.clinph.2008.09.007

    Article  PubMed  Google Scholar 

  24. Congedo M, John RE, De Ridder D, Prichep L (2010) Group independent component analysis of resting state EEG in large normative samples. Int J Psychophysiol 78:89–99. doi: 10.1016/j.ijpsycho.2010.06.003

    Article  PubMed  Google Scholar 

  25. Damoiseaux JS, Rombouts SARB, Barkhof F et al (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853. doi: 10.1073/pnas.0601417103

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. Dornhege G, Blankertz B, Krauledat M et al (2006) Combined optimization of spatial and temporal filters for improving brain-computer interfacing. IEEE Trans Biomed Eng 53:2274–2281. doi: 10.1109/TBME.2006.883649

    Article  PubMed  Google Scholar 

  27. Doron E, Yeredor A (2004) Asymptotically optimal blind separation of parametric Gaussian sources. In: Independent component analysis and blind signal separation. Springer, Berlin, Heidelberg, pp 390–397

    Chapter  Google Scholar 

  28. Eichele T, Rachakonda S, Brakedal B et al (2011) EEGIFT: Group independent component analysis for event-related EEG data. Comput Intell Neurosci. doi: 10.1155/2011/129365

    PubMed  PubMed Central  Google Scholar 

  29. Erhardt EB, Rachakonda S, Bedrick EJ et al (2011) Comparison of multi-subject ICA methods for analysis of fMRI data. Hum Brain Mapp 32:2075–2095. doi: 10.1002/hbm.21170

    Article  PubMed  Google Scholar 

  30. Foucher JR, Otzenberger H, Gounot D (2003) The BOLD response and the gamma oscillations respond differently than evoked potentials: an interleaved EEG-fMRI study. Neuroscience 4:1–11. doi: 10.1186/1471-2202-4-22

    Google Scholar 

  31. Fries P, Nikolić D, Singer W (2007) The gamma cycle. Trends Neurosci 30:309–316. doi: 10.1016/j.tins.2007.05.005

    CAS  Article  PubMed  Google Scholar 

  32. Friston KJ, Holmes AP, Worsley KJ et al (1994) Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 2:189–210. doi: 10.1002/hbm.460020402

    Article  Google Scholar 

  33. Himberg J, Hyvärinen A (2003) Icasso: software for investigating the reliability of ICA estimates by clustering and visualization. In: 13th Workshop on Neural Networks for Signal Processing. IEEE, pp 259–268

  34. Himberg J, Hyvärinen A, Esposito F (2004) Validating the independent components of neuroimaging time series via clustering and visualization. Neuroimage 22:1214–1222. doi: 10.1016/j.neuroimage.2004.03.027

    Article  PubMed  Google Scholar 

  35. Hu L, Zhang ZG, Mouraux A, Iannetti GD (2015) Multiple linear regression to estimate time-frequency electrophysiological responses in single trials. Neuroimage 111:442–453. doi: 10.1016/j.neuroimage.2015.01.062

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. Huster RJ, Plis SM, Calhoun VD (2015) Group-level component analyses of EEG: validation and evaluation. Front Neurosci 9:254. doi: 10.3389/fnins.2015.00254

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hyvärinen A (2011) Testing the ICA mixing matrix based on inter-subject or inter-session consistency. Neuroimage 58:122–136. doi: 10.1016/j.neuroimage.2011.05.086

    Article  PubMed  Google Scholar 

  38. Hyvärinen A, Ramkumar P (2013) Testing independent component patterns by inter-subject or inter-session consistency. Front Hum Neurosci 7:94. doi: 10.3389/fnhum.2013.00094

    Article  PubMed  PubMed Central  Google Scholar 

  39. Hyvärinen A, Karhunen J, Oja E (2001) Independent component analysis. Wiley, New York

    Book  Google Scholar 

  40. Hyvärinen A, Ramkumar P, Parkkonen L, Hari R (2010) Independent component analysis of short-time Fourier transforms for spontaneous EEG/MEG analysis. Neuroimage 49:257–271. doi: 10.1016/j.neuroimage.2009.08.028

    Article  PubMed  Google Scholar 

  41. Jeong J (2004) EEG dynamics in patients with Alzheimer’s disease. Clin Neurophysiol 115:1490–1505. doi: 10.1016/j.clinph.2004.01.001

    Article  PubMed  Google Scholar 

  42. Kauppi JP, Parkkonen L, Hari R, Hyvärinen A (2013) Decoding magnetoencephalographic rhythmic activity using spectrospatial information. Neuroimage 83:921–936. doi: 10.1016/j.neuroimage.2013.07.026

    Article  PubMed  Google Scholar 

  43. Kilner JMM, Mattout J, Henson R, Friston KJJ (2005) Hemodynamic correlates of EEG: a heuristic. Neuroimage 28:280–286. doi: 10.1016/j.neuroimage.2005.06.008

    CAS  Article  PubMed  Google Scholar 

  44. Klassen BT, Hentz JG, Shill HA et al (2011) Quantitative EEG as a predictive biomarker for Parkinson disease dementia. Neurology 77:118–124. doi: 10.1212/WNL.0b013e318224af8d

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195. doi: 10.1016/S0165-0173(98)00056-3

    CAS  Article  PubMed  Google Scholar 

  46. Kovacevic N, McIntosh AR (2007) Groupwise independent component decomposition of EEG data and partial least square analysis. Neuroimage 35:1103–1112. doi: 10.1016/j.neuroimage.2007.01.016

    Article  PubMed  Google Scholar 

  47. Labounek R, Lamoš M, Mareček R et al (2015) Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG. J Neurosci Methods 245:125–136. doi: 10.1016/j.jneumeth.2015.02.016

    Article  PubMed  Google Scholar 

  48. Labounek R, Janeček D, Mareček R et al (2016) Generalized EEG-fMRI spectral and spatiospectral heuristic models. In: IEEE 13th international symposium on biomedical imaging: From nano to macro. IEEE, Prague, pp 767–770. doi:10.1109/ISBI.2016.7493379

  49. Lachaux J-P, Fonlupt P, Kahane P et al (2007) Relationship between task-related gamma oscillations and BOLD signal: New insights from combined fMRI and intracranial EEG. Hum Brain Mapp 28:1368–1375. doi: 10.1002/hbm.20352

    Article  PubMed  Google Scholar 

  50. Laufs H, Holt JL, Elfont R et al (2006) Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31:1408–1418. doi: 10.1016/j.neuroimage.2006.02.002

    CAS  Article  PubMed  Google Scholar 

  51. Lemm S, Blankertz B, Curio G, Müller KR (2005) Spatio-spectral filters for improving the classification of single trial EEG. IEEE Trans Biomed Eng 52:1541–1548. doi: 10.1109/TBME.2005.851521

    Article  PubMed  Google Scholar 

  52. Li Y-O, Adali T, Calhoun VD (2007) Estimating the number of independent components for functional magnetic resonance imaging data. Hum Brain Mapp 28:1251–1266. doi: 10.1002/hbm.20359

    Article  PubMed  Google Scholar 

  53. Li S, Wang Y, Bin G et al (2015) Space distribution of EEG responses to hanoi-moving visual and auditory stimulation with fourier independent component analysis. Front Hum Neurosci 9:1–13. doi: 10.3389/fnhum.2015.00405

    Google Scholar 

  54. Lio G, Boulinguez P (2013) Greater robustness of second order statistics than higher order statistics algorithms to distortions of the mixing matrix in blind source separation of human EEG: implications for single-subject and group analyses. Neuroimage 67:137–152. doi: 10.1016/j.neuroimage.2012.11.015

    Article  PubMed  Google Scholar 

  55. Makeig S, Jung TP, Bell AJ et al (1997) Blind separation of auditory event-related brain responses into independent components. Proc Natl Acad Sci USA 94:10979–10984. doi: 10.1073/pnas.94.20.10979

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  56. Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cogn Sci 8:204–210. doi: 10.1016/j.tics.2004.03.008

    Article  PubMed  Google Scholar 

  57. Mantini D, Perrucci MG, Del Gratta C et al (2007) Electrophysiological signatures of resting state networks in the human brain. Proc Natl Acad Sci USA 104:13170–13175. doi: 10.1073/pnas.0700668104

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Mantini D, Corbetta M, Perrucci MG et al (2009) Large-scale brain networks account for sustained and transient activity during target detection. Neuroimage 44:265–274. doi: 10.1016/j.neuroimage.2008.08.019

    Article  PubMed  Google Scholar 

  59. Mareček R, Lamoš M, Mikl M et al (2016) What can be found in scalp EEG spectrum beyond common frequency bands. EEG–fMRI study. J Neural Eng 13:1–13. doi: 10.1088/1741-2560/13/4/046026

    Google Scholar 

  60. Mareček R, Lamoš M, Labounek R et al (2017) Multiway array decomposition of EEG spectrum: Implications of its stability for the exploration of large-scale brain networks. Neural Comput. doi:10.1162/NECO_a_00933

    PubMed  Google Scholar 

  61. Meng J, Huang G, Zhang D, Zhu X (2013) Optimizing spatial spectral patterns jointly with channel configuration for brain-computer interface. Neurocomputing 104:115–126. doi: 10.1016/j.neucom.2012.11.004

    Article  Google Scholar 

  62. Miller KJ (2010) Broadband spectral change: evidence for a macroscale correlate of population firing rate? J Neurosci 30:6477–6479. doi: 10.1523/JNEUROSCI.6401-09.2010

    CAS  Article  PubMed  Google Scholar 

  63. Murta T, Leite M, Carmichael DW et al (2015) Electrophysiological correlates of the BOLD signal for EEG-informed fMRI. Hum Brain Mapp 36:391–414. doi: 10.1002/hbm.22623

    Article  PubMed  Google Scholar 

  64. Niedermeyer E, da Silva FL (2011) Electroencephalography: basic principles, clinical applications, and related fields, 6th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  65. Nikulin VV, Nolte G, Curio G (2011) A novel method for reliable and fast extraction of neuronal EEG/MEG oscillations on the basis of spatio-spectral decomposition. Neuroimage 55:1528–1535. doi: 10.1016/j.neuroimage.2011.01.057

    Article  PubMed  Google Scholar 

  66. Nir Y, Fisch L, Mukamel R et al (2007) Coupling between Neuronal Firing Rate, Gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:1275–1285. doi: 10.1016/j.cub.2007.06.066

    CAS  Article  PubMed  Google Scholar 

  67. Novi Q, Guan C, Dat TH, Xue P (2007) Sub-band common spatial pattern (SBCSP) for brain-computer interface. Proc 3rd Int IEEE EMBS Conf Neural Eng. doi: 10.1109/CNE.2007.369647

    Google Scholar 

  68. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, New York

    Book  Google Scholar 

  69. Onton J, Delorme A, Makeig S (2005) Frontal midline EEG dynamics during working memory. Neuroimage 27:341–356. doi: 10.1016/j.neuroimage.2005.04.014

    Article  PubMed  Google Scholar 

  70. Onton J, Westerfield M, Townsend J, Makeig S (2006) Imaging human EEG dynamics using independent component analysis. Neurosci Biobehav Rev 30:808–822. doi: 10.1016/j.neubiorev.2006.06.007

    Article  PubMed  Google Scholar 

  71. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. Trans Biomed Eng IEEE 42:658–665. doi: 10.1109/10.391164

    CAS  Article  Google Scholar 

  72. Ponomarev VA, Mueller A, Candrian G et al (2014) Group Independent Component Analysis (gICA) and Current Source Density (CSD) in the study of EEG in ADHD adults. Clin Neurophysiol 125:83–97. doi: 10.1016/j.clinph.2013.06.015

    Article  PubMed  Google Scholar 

  73. Ramkumar P, Parkkonen L, Hari R, Hyvärinen A (2012) Characterization of neuromagnetic brain rhythms over time scales of minutes using spatial independent component analysis. Hum Brain Mapp 33:1648–1662. doi: 10.1002/hbm.21303

    Article  PubMed  Google Scholar 

  74. Ramkumar P, Parkkonen L, Hyvärinen A (2014) Group-level spatial independent component analysis of Fourier envelopes of resting-state MEG data. Neuroimage 86:480–491. doi: 10.1016/j.neuroimage.2013.10.032

    Article  PubMed  Google Scholar 

  75. Rodriguez G, Copello F, Vitali P et al (1999) EEG spectral profile to stage Alzheimer’s disease. Clin Neurophysiol 110:1831–1837. doi: 10.1016/S1388-2457(99)00123-6

    CAS  Article  PubMed  Google Scholar 

  76. Rosa MJ, Kilner J, Blankenburg F et al (2010) Estimating the transfer function from neuronal activity to BOLD using simultaneous EEG-fMRI. Neuroimage 49:1496–1509. doi: 10.1016/j.neuroimage.2009.09.011

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  77. Scheeringa RR, Fries P, Petersson K-MM et al (2011) Neuronal dynamics underlying high- and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583. doi: 10.1016/j.neuron.2010.11.044

    CAS  Article  PubMed  Google Scholar 

  78. Sclocco R, Tana MG, Visani E et al (2014) EEG-informed fMRI analysis during a hand grip task: estimating the relationship between EEG rhythms and the BOLD signal. Front Hum Neurosci 8:186. doi: 10.3389/fnhum.2014.00186

    Article  PubMed  PubMed Central  Google Scholar 

  79. Shou G, Ding L, Dasari D (2012) Probing neural activations from continuous EEG in a real-world task: Time-frequency independent component analysis. J Neurosci Methods 209:22–34. doi: 10.1016/j.jneumeth.2012.05.022

    Article  PubMed  Google Scholar 

  80. Soikkeli R, Partanen J, Soininen H et al (1991) Slowing of EEG in Parkinson’s disease. Electroencephalogr Clin Neurophysiol 79:159–165. doi: 10.1016/0013-4694(91)90134-P

    CAS  Article  PubMed  Google Scholar 

  81. Spadone S, Della Penna S, Sestieri C et al (2015) Dynamic reorganization of human resting-state networks during visuospatial attention. Proc Natl Acad Sci USA 112:8112–8117. doi: 10.1073/pnas.1415439112

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Stone JV (2004) Independent component analysis: a tutorial introduction. MIT press, Cambridge

    Google Scholar 

  83. Takeda Y, Hiroe N, Yamashita O, Sato M aki (2016) Estimating repetitive spatiotemporal patterns from resting-state brain activity data. Neuroimage 133:251–265. doi: 10.1016/j.neuroimage.2016.03.014

    Article  PubMed  Google Scholar 

  84. Tang A (2010) Applications of second order blind identification to high-density EEG-based brain imaging: a review. In: International Symposium on Neural Networks. Springer Berlin, Heidelberg, pp 368–377

  85. Tang AC, Sutherland MT, McKinney CJ (2005) Validation of SOBI components from high-density EEG. Neuroimage 25:539–553. doi: 10.1016/j.neuroimage.2004.11.027

    Article  PubMed  Google Scholar 

  86. Tichavský P, Koldovský Z, Doron E et al (2006) Blind signal separation by combining two ICA algorithms: HOS-based EFICA and time structure-based WASOBI. In: 14th European Signal Processing Conference. IEEE, Florence, pp 1–5

    Google Scholar 

  87. Tomioka R, Dornhege G, Nolte G et al (2006) Spectrally weighted Common Spatial Pattern algorithm for single trial EEG classification. Dept Math Eng Univ Tokyo Tokyo Japan Tech Rep 40:1–23

    Google Scholar 

  88. Van Den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141. doi: 10.1002/hbm.20737

    Article  PubMed  Google Scholar 

  89. Van Der Meij R, Van Ede F, Maris E (2016) Rhythmic components in extracranial brain signals reveal multifaceted task modulation of overlapping neuronal activity. PLoS ONE 11:1–28. doi: 10.1371/journal.pone.0154881

    Google Scholar 

  90. Wang Y, Sokhadze EM, El-Baz AS et al (2015) Relative power of specific EEG bands and their ratios during neurofeedback training in children with autism spectrum disorder. Front Hum Neurosci 9:723. doi: 10.3389/fnhum.2015.00723

    PubMed  Google Scholar 

  91. Wolpaw JR, Birbaumer N, Heetderks WJ et al (2000) Brain-computer interface technology: a review of the first international meeting. IEEE Trans Rehabil Eng 8:164–173. doi: 10.1109/TRE.2000.847807

    CAS  Article  PubMed  Google Scholar 

  92. Wu W, Gao X, Hong B, Gao S (2008) Classifying single-trial EEG during motor imagery by iterative spatio-spectral patterns learning (ISSPL). IEEE Trans Biomed Eng 55:1733–1743. doi: 10.1109/TBME.2008.919125

    Article  PubMed  Google Scholar 

  93. Wu L, Eichele T, Calhoun VD (2010) Reactivity of hemodynamic responses and functional connectivity to different states of alpha synchrony: a concurrent EEG-fMRI study. Neuroimage 52:1252–1260. doi: 10.1016/j.neuroimage.2010.05.053

    Article  PubMed  PubMed Central  Google Scholar 

  94. Yeredor A (2000) Blind source separation via the second characteristic function. Signal Process 80:897–902. doi: 10.1016/S0165-1684(00)00062-1

    Article  Google Scholar 

  95. Yu Q, Wu L, Bridwell DA et al (2016) Building an EEG-fMRI multi-modal brain graph: a concurrent EEG-fMRI study. Front Hum Neurosci. doi: 10.3389/fnhum.2016.00476

    Google Scholar 

  96. Yuan H, Liu T, Szarkowski R et al (2010) Negative covariation between task-related responses in alpha/beta-band activity and BOLD in human sensorimotor cortex: an EEG and fMRI study of motor imagery and movements. Neuroimage 49:2596–2606. doi: 10.1016/j.neuroimage.2009.10.028

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We would like to thank Dr. Milena Košťálová for her help with designing the semantic decision task. This research was supported Grant No. P304/11/1318 of Grant Agency of Czech Republic, by Grants Nos. FEKT-S-14-2210 and FEKT-S-11-2-921 of Brno University of Technology, by Grants Nos. CZ.1.05/1.1.00/02.0068 of Central European Institute of Technology and by Grants Nos. AZV 16-302100A of Palacký University. The funding is highly acknowledged. Computational resources were provided by the MetaCentrum under the program LM2010005 and the CERIT-SC under the program Centre CERIT Scientific Cloud, part of the Operational Program Research and Development for Innovations, Reg. No. CZ.1.05/3.2.00/08.0144.

Author information

Affiliations

Authors

Corresponding author

Correspondence to René Labounek.

Additional information

This is one of several papers published together in Brain Topography on the “Special Issue: Multisubject decomposition of EEG - methods and applications”.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 18130 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Labounek, R., Bridwell, D.A., Mareček, R. et al. Stable Scalp EEG Spatiospectral Patterns Across Paradigms Estimated by Group ICA. Brain Topogr 31, 76–89 (2018). https://doi.org/10.1007/s10548-017-0585-8

Download citation

Keywords

  • EEG
  • ICA
  • Spatiospectral patterns
  • Multi-subject blind source separation
  • Resting-state
  • Semantic decision
  • Visual oddball