Advertisement

Brain Topography

, Volume 30, Issue 6, pp 797–809 | Cite as

White Matter Connectivity Pattern Associate with Characteristics of Scalp EEG Signals

  • Jinnan Gong
  • Cheng Luo
  • Xuebin Chang
  • Rui Zhang
  • Benjamin Klugah-Brown
  • Lanjin Guo
  • Peng Xu
  • Dezhong Yao
Original Paper

Abstract

The rhythm of electroencephalogram (EEG) depends on the neuroanatomical-based parameters such as white matter (WM) connectivity. However, the impacts of these parameters on the specific characteristics of EEG have not been clearly understood. Previous studies demonstrated that, these parameters contribute the inter-subject differences of EEG during performance of specific task such as motor imagery (MI). Though researchers have worked on this phenomenon, the idea is yet to be understood in terms of the mechanism that underlies such differences. Here, to tackle this issue, we began our investigations by first examining the structural features related to scalp EEG characteristics, which are event-related desynchronizations (ERDs), during MI using diffusion MRI. Twenty-four right-handed subjects were recruited to accomplish MI tasks and MRI scans. Based on the high spatial resolution of the structural and diffusion images, the motor-related WM links, such as basal ganglia (BG)-primary somatosensory cortex (SM1) pathway and supplementary motor area (SMA)-SM1 connection, were reconstructed by using probabilistic white matter tractography. Subsequently, the relationships of WM characteristics with EEG signals were investigated. These analyses demonstrated that WM pathway characteristics, including the connectivity strength and the positional characteristics of WM connectivity on SM1 (defined by the gyrus-sulcus ratio of connectivity, GSR), have a significant impact on ERDs when doing MI. Interestingly, the high GSR of WM connections between SM1 and BG were linked to the better ERDs. These results therefore, indicated that the connectivity in the gyrus of SM1 interacted with MI network which played the critical role for the scalp EEG signal extraction of MI to a great extent. The study provided the coupling mechanism between structural and dynamic physiological features of human brain, which would also contribute to understanding individual differences of EEG in MI-brain computer interface.

Keywords

Diffusion MRI Eeg White matter connectivity Motor imagery Brain-computer interface 

Notes

Acknowledgements

This study was funded by grants from the National Nature Science Foundation of China (81330032), the PCSIRT Project (IRT0910), and Special-Funded Program on National Key Scientific Instruments and Equipment Development of China (2013YQ49085908).

Compliance with Ethical Standards

Disclosures

None of the authors has any conflict of interest to disclose. We confirm that we have read the Journal’s position on issues involved in ethical publication and affirm that this report is consistent with those guidelines.

Supplementary material

10548_2017_581_MOESM1_ESM.docx (1000 kb)
Supplementary material 1 (DOCX 999 KB)

References

  1. Ahn M, Jun SC (2015) Performance variation in motor imagery brain–computer interface: a brief review. J Neurosci Methods 243:103–110. doi: 10.1016/j.jneumeth.2015.01.033 CrossRefPubMedGoogle Scholar
  2. Alexander GE, Crutcher MD (1990) Preparation for movement: neural representations of intended direction in three motor areas of the monkey. J Neurophysiol 64(1):133–150PubMedGoogle Scholar
  3. Behrens TEJ, Berg HJ, Jbabdi S et al (2007) Probabilistic diffusion tractography with multiple fibre orientations: what can we gain? NeuroImage 34:144–155. doi: 10.1016/j.neuroimage.2006.09.018 CrossRefPubMedGoogle Scholar
  4. Birbaumer N (2006) Breaking the silence: brain? Computer interfaces (BCI) for communication and motor control. Psychophysiology 43:517–532. doi: 10.1111/j.1469-8986.2006.00456.x CrossRefPubMedGoogle Scholar
  5. Blankertz B, Sannelli C, Halder S et al (2010) Neurophysiological predictor of SMR-based BCI performance. NeuroImage 51:1303–1309. doi: 10.1016/j.neuroimage.2010.03.022 CrossRefPubMedGoogle Scholar
  6. Blecher T, Tal I, Ben-Shachar M (2016) White matter microstructural properties correlate with sensorimotor synchronization abilities. NeuroImage 138:1–12. doi: 10.1016/j.neuroimage.2016.05.022 CrossRefPubMedGoogle Scholar
  7. Bloom JS, Hynd GW (2005) The role of the corpus callosum in interhemispheric transfer of information: excitation or inhibition? Neuropsychol Rev 15:59–71. doi: 10.1007/s11065-005-6252-y CrossRefPubMedGoogle Scholar
  8. Boecker H, Dagher A, Ceballos-Baumann AO et al (1998) Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: investigations with H2 15O PET. J Neurophysiol 79:1070–1080PubMedGoogle Scholar
  9. Boecker H, Jankowski J, Ditter P, Scheef L (2008) A role of the basal ganglia and midbrain nuclei for initiation of motor sequences. NeuroImage 39:1356–1369. doi: 10.1016/j.neuroimage.2007.09.069 CrossRefPubMedGoogle Scholar
  10. Chang C-C, Lin C-J (2011) LIBSVM. ACM Trans Intell Syst Technol 2:1–27. doi: 10.1145/1961189.1961199 CrossRefGoogle Scholar
  11. Daly JJ, Wolpaw JR (2008) Brain–computer interfaces in neurological rehabilitation. Lancet Neurol 7:1032–1043CrossRefPubMedGoogle Scholar
  12. Decety J (1996) The neurophysiological basis of motor imagery. Behav Brain Res 77:45–52CrossRefPubMedGoogle Scholar
  13. Deiber MP, Ibañez V, Sadato N, Hallett M (1996) Cerebral structures participating in motor preparation in humans: a positron emission tomography study. J Neurophysiol 75:233–247PubMedGoogle Scholar
  14. Franke K, Ziegler G, Klöppel S et al (2010) Estimating the age of healthy subjects from T1-weighted MRI scans using kernel methods: exploring the influence of various parameters. NeuroImage 50:883–892. doi: 10.1016/j.neuroimage.2010.01.005 CrossRefPubMedGoogle Scholar
  15. Galán F, Nuttin M, Lew E et al (2008) A brain-actuated wheelchair: asynchronous and non-invasive brain-computer interfaces for continuous control of robots. Clin Neurophysiol 119:2159–2169. doi: 10.1016/j.clinph.2008.06.001 CrossRefPubMedGoogle Scholar
  16. Georgopoulos AP, Taira M, Lukashin A (1993) Cognitive neurophysiology of the motor cortex. Science 260:47–52CrossRefPubMedGoogle Scholar
  17. Gerardin E, Pochon J-B, Poline J-B et al (2004) Distinct striatal regions support movement selection, preparation and execution. Neuroreport 15:2327–2331CrossRefPubMedGoogle Scholar
  18. Gregg M, Hall C, Butler A (2010) The MIQ-RS: a suitable option for examining movement imagery ability. Evid Based Complement Altern Med 7:249–257. doi: 10.1093/ecam/nem170 CrossRefGoogle Scholar
  19. Halder S, Varkuti B, Bogdan M et al (2013) Prediction of brain-computer interface aptitude from individual brain structure. Front Hum Neurosci 7:105. doi: 10.3389/fnhum.2013.00105 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Hall JE (2015) Guyton and Hall textbook of medical physiology. Elsevier Health Sciences, PhiladelphiaGoogle Scholar
  21. Hétu S, Grégoire M, Saimpont A et al (2013) The neural network of motor imagery: an ALE meta-analysis. Neurosci Biobehav Rev 37:930–949. doi: 10.1016/j.neubiorev.2013.03.017 CrossRefPubMedGoogle Scholar
  22. Jeannerod M, Decety J (1995) Mental motor imagery: a window into the representational stages of action. Curr Opin Neurobiol 5:727–732CrossRefPubMedGoogle Scholar
  23. Jenkinson M, Beckmann CF, Behrens TEJ et al (2012) FSL. NeuroImage 62:782–790. doi: 10.1016/j.neuroimage.2011.09.015 CrossRefPubMedGoogle Scholar
  24. Kasess CH, Windischberger C, Cunnington R et al (2008) The suppressive influence of SMA on M1 in motor imagery revealed by fMRI and dynamic causal modeling. NeuroImage 40:828–837. doi: 10.1016/j.neuroimage.2007.11.040 CrossRefPubMedGoogle Scholar
  25. Kubler A, Nijboer F, Mellinger J et al (2005) Patients with ALS can use sensorimotor rhythms to operate a brain-computer interface. Neurology 64:1775–1777. doi: 10.1212/01.WNL.0000158616.43002.6D CrossRefPubMedGoogle Scholar
  26. Malouin F, Richards CL, Jackson PL et al (2007) The kinesthetic and visual imagery questionnaire (KVIQ) for assessing motor imagery in persons with physical disabilities: a reliability and construct validity study. J Neurol Phys Ther 31:20–29. doi: 10.1097/01.NPT.0000260567.24122.64 CrossRefPubMedGoogle Scholar
  27. Meyer BU, Röricht S, Woiciechowsky C (1998) Topography of fibers in the human corpus callosum mediating interhemispheric inhibition between the motor cortices. Ann Neurol 43:360–369. doi: 10.1002/ana.410430314 CrossRefPubMedGoogle Scholar
  28. Müller K, Bacht K, Prochnow D et al (2013) Activation of thalamus in motor imagery results from gating by hypnosis. NeuroImage 66:361–367. doi: 10.1016/j.neuroimage.2012.10.073 CrossRefPubMedGoogle Scholar
  29. Müller-Putz GR, Daly I, Kaiser V (2014) Motor imagery-induced EEG patterns in individuals with spinal cord injury and their impact on brain–computer interface accuracy. J Neural Eng 11:035011. doi: 10.1088/1741-2560/11/3/035011 CrossRefPubMedGoogle Scholar
  30. Munzert J, Lorey B, Zentgraf K (2009) Cognitive motor processes: the role of motor imagery in the study of motor representations. Brain Res Rev 60:306–326. doi: 10.1016/j.brainresrev.2008.12.024 CrossRefPubMedGoogle Scholar
  31. Nachev P, Kennard C, Husain M (2008) Functional role of the supplementary and pre-supplementary motor areas. Nat Rev Neurosci 9:856–869. doi: 10.1038/nrn2478 CrossRefPubMedGoogle Scholar
  32. Nam CS, Jeon Y, Kim Y-J et al (2011) Movement imagery-related lateralization of event-related (de)synchronization (ERD/ERS): motor-imagery duration effects. Clin Neurophysiol 122:567–577. doi: 10.1016/j.clinph.2010.08.002 CrossRefPubMedGoogle Scholar
  33. Petrides M, Schwartz AB, Massey J (1989) Mental rotation of the neuronal populaton vector. Science 243:234–236CrossRefPubMedGoogle Scholar
  34. Pfurtscheller G, Neuper C (1997) Motor imagery activates primary sensorimotor area in humans. Neurosci Lett 239:65–68CrossRefPubMedGoogle Scholar
  35. Postle BR, D’Esposito M (1999) Dissociation of human caudate nucleus activity in spatial and nonspatial working memory: an event-related fMRI study. Brain Res Cogn Brain Res 8:107–115CrossRefPubMedGoogle Scholar
  36. Ramoser H, Muller-Gerking J, Pfurtscheller G (2000) Optimal spatial filtering of single trial EEG during imagined hand movement. IEEE Trans Rehabil Eng 8:441–446. doi: 10.1109/86.895946 CrossRefPubMedGoogle Scholar
  37. Ruschel M, Knosche TR, Friederici AD et al (2013) Connectivity architecture and subdivision of the human inferior parietal cortex revealed by diffusion MRI. Cereb Cortex. doi: 10.1093/cercor/bht098 PubMedGoogle Scholar
  38. Schimpf PH, Ramon C, Haueisen J (2002) Dipole models for the EEG and MEG. IEEE Trans Biomed Eng 49:409–418. doi: 10.1109/10.995679 CrossRefPubMedGoogle Scholar
  39. Smith SM, Jenkinson M, Johansen-Berg H et al (2006) Tract-based spatial statistics: voxelwise analysis of multi-subject diffusion data. NeuroImage 31:1487–1505. doi: 10.1016/j.neuroimage.2006.02.024 CrossRefPubMedGoogle Scholar
  40. Smola AJ, Schölkopf B (2004) A tutorial on support vector regression. Stat Comput 14:199–222. doi: 10.1023/B:STCO.0000035301.49549.88 CrossRefGoogle Scholar
  41. Stinear CM, Fleming MK, Byblow WD (2006) Lateralization of unimanual and bimanual motor imagery. Brain Res 1095:139–147. doi: 10.1016/j.brainres.2006.04.008 CrossRefPubMedGoogle Scholar
  42. Taniwaki T, Okayama A, Yoshiura T et al (2003) Reappraisal of the motor role of basal ganglia: a functional magnetic resonance image study. J Nerosci 23:3432–3438Google Scholar
  43. Valdés-Hernández PA, Ojeda-González A, Martínez-Montes E et al (2010) White matter architecture rather than cortical surface area correlates with the EEG alpha rhythm. NeuroImage 49:2328–2339. doi: 10.1016/j.neuroimage.2009.10.030 CrossRefPubMedGoogle Scholar
  44. Villablanca JR (2010) Why do we have a caudate nucleus. Acta Neurobiol Exp 70:95–105Google Scholar
  45. Whitford TJ, Rennie CJ, Grieve SM et al (2006) Brain maturation in adolescence: concurrent changes in neuroanatomy and neurophysiology. Hum Brain Mapp 28:228–237. doi: 10.1002/hbm.20273 CrossRefGoogle Scholar
  46. Zhang R, Xu P, Chen R et al (2015) Predicting inter-session performance of SMR-Based brain–computer interface using the spectral entropy of resting-state EEG. Brain Topogr. doi: 10.1007/s10548-015-0429-3 Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Jinnan Gong
    • 1
  • Cheng Luo
    • 1
  • Xuebin Chang
    • 1
  • Rui Zhang
    • 1
  • Benjamin Klugah-Brown
    • 1
  • Lanjin Guo
    • 1
  • Peng Xu
    • 1
  • Dezhong Yao
    • 1
  1. 1.Key Laboratory for NeuroInformation of Ministry of Education, Center for Information in Medicine, High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, School of Life Science and TechnologyUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations