Brain Topography

, Volume 30, Issue 6, pp 724–738 | Cite as

A Simple Statistical Method for the Automatic Detection of Ripples in Human Intracranial EEG

Original Paper


High frequency oscillations (HFOs) are a promising biomarker of epileptic tissue, but detection of these electrographic events remains a challenge. Automatic detectors show encouraging results, but they typically require optimization of multiple parameters, which is a barrier to good performance and broad applicability. We therefore propose a new automatic HFO detection algorithm, focusing on simplicity and ease of implementation. It requires tuning of only an amplitude threshold, which can be determined by an iterative process or directly calculated from statistics of the rectified filtered data (i.e. mean plus standard deviation). The iterative approach uses an estimate of the amplitude probability distribution of the background activity to calculate the optimum threshold for identification of transient high amplitude events. We tested both the iterative and non-iterative approaches using a dataset of visually marked HFOs, and we compared the performance to a commonly used detector based on the root-mean-square. When the threshold was optimized for individual channels via ROC curve, all three methods were comparable. The iterative detector achieved a sensitivity of 99.6%, false positive rate (FPR) of 1.1%, and false detection rate (FDR) of 37.3%. However, in an eight-fold cross-validation test, the iterative method had better sensitivity than the other two methods (80.0% compared to 64.4 and 65.8%), with FPR and FDR of 1.3, and 49.4%, respectively. The simplicity of this algorithm, with only a single parameter, will enable consistent application of automatic detection across research centers and recording modalities, and it may therefore be a powerful tool for the assessment and localization of epileptic activity.


HFO Epilepsy Ripple Electrocorticogram Depth electrode 



We gratefully thank R. Zelmann for sharing iEEG recordings and visual HFO markings. This research was financially supported by Royal Thai Government Fellowship awarded to K. Charupanit.

Supplementary material

10548_2017_579_MOESM1_ESM.m (9 kb)
Supplementary material 1 (M 9 KB)


  1. Amiri M, Lina JM, Pizzo F, Gotman J (2016) High frequency oscillations and spikes: separating real HFOs from false oscillations. Clin Neurophysiol 127:187–196. doi: 10.1016/j.clinph.2015.04.290 CrossRefPubMedGoogle Scholar
  2. Blanco JA, Stead M, Krieger A et al (2010) Unsupervised classification of high-frequency oscillations in human neocortical epilepsy and control patients. J Neurophysiol 104:2900–2912. doi: 10.1152/jn.01082.2009 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bragin A, Engel J, Wilson CL et al (1999) High-frequency oscillations in human brain. Hippocampus 9:137–142. doi: 10.1002/(SICI)1098-1063(1999)9:2<137::AID-HIPO5>3.0.CO;2-0 CrossRefPubMedGoogle Scholar
  4. Bragin A, Engel J, Staba RJ (2010) High-frequency oscillations in epileptic brain. Curr Opin Neurol 23:151–156. doi: 10.1097/WCO.0b013e3283373ac8 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Burnos S, Hilfiker P, Sürücü O et al (2014) Human intracranial high frequency oscillations (HFOs) detected by automatic time-frequency analysis. PLoS ONE 9:e94381. doi: 10.1371/journal.pone.0094381 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Buzsáki G, Horváth Z, Urioste R et al (1992) High-frequency network oscillation in the hippocampus. Science 256:1025–1027. doi: 10.1126/science.1589772 CrossRefPubMedGoogle Scholar
  7. Buzsáki G, Anastassiou CA, Koch C (2012) The origin of extracellular fields and currents—EEG, ECoG, LFP and spikes. Nat Rev Neurosci 13:407–420CrossRefPubMedPubMedCentralGoogle Scholar
  8. Chaibi S, Lajnef T, Sakka Z et al (2013) A comparaison of methods for detection of high frequency oscillations (HFOs) in human intacerberal EEG recordings. Am J Sig Process 3:25–34. doi: 10.5923/j.ajsp.20130302.02 Google Scholar
  9. Cho JR, Koo DL, Joo EY et al (2014) Resection of individually identified high-rate high-frequency oscillations region is associated with favorable outcome in neocortical epilepsy. Epilepsia 55:1872–1883. doi: 10.1111/epi.12808 CrossRefPubMedGoogle Scholar
  10. Crépon B, Navarro V, Hasboun D et al (2010) Mapping interictal oscillations greater than 200 Hz recorded with intracranial macroelectrodes in human epilepsy. Brain 133:33–45CrossRefPubMedGoogle Scholar
  11. Dümpelmann M, Jacobs J, Kerber K, Schulze-Bonhage A (2012) Automatic 80-250Hz “ripple” high frequency oscillation detection in invasive subdural grid and strip recordings in epilepsy by a radial basis function neural network. Clin Neurophysiol 123:1721–1731. doi: 10.1016/j.clinph.2012.02.072 CrossRefPubMedGoogle Scholar
  12. Engel J, da Silva FL (2012) High-frequency oscillations - where we are and where we need to go. Prog Neurobiol 98:316–318. doi: 10.1016/j.pneurobio.2012.02.001 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Ferrari-Marinho T, Perucca P, Mok K et al (2015) Pathologic substrates of focal epilepsy influence the generation of high-frequency oscillations. Epilepsia 56:592–598. doi: 10.1111/epi.12940 CrossRefPubMedGoogle Scholar
  14. Fujiwara H, Greiner HM, Lee KH et al (2012) Resection of ictal high-frequency oscillations leads to favorable surgical outcome in pediatric epilepsy. Epilepsia 53:1607–1617. doi: 10.1111/j.1528-1167.2012.03629.x CrossRefPubMedPubMedCentralGoogle Scholar
  15. Gardner AB, Worrell GA, Marsh E et al (2007) Human and automated detection of high-frequency oscillations in clinical intracranial EEG recordings. Clin Neurophysiol 118:1134–1143. doi: 10.1016/j.clinph.2006.12.019 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Gliske SV, Irwin ZT, Davis KA et al (2016) Universal automated high frequency oscillation detector for real-time, long term EEG. Clin Neurophysiol 127:1057–1066. doi: 10.1016/j.clinph.2015.07.016 CrossRefPubMedGoogle Scholar
  17. Grange W, Haas P, Wild A et al (2008) Detection of transient events in the presence of background noise. J Phys Chem B 112:7140–7144. doi: 10.1021/jp7114862 CrossRefPubMedGoogle Scholar
  18. Jacobs J, LeVan P, Chander R et al (2008) Interictal high-frequency oscillations (80–500 Hz) are an indicator of seizure onset areas independent of spikes in the human epileptic brain. Epilepsia 49:1893–1907. doi: 10.1111/j.1528-1167.2008.01656.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jacobs J, Zijlmans M, Zelmann R et al (2010) High-frequency electroencephalographic oscillations correlate with outcome of epilepsy surgery. Ann Neurol 67:209–220. doi: 10.1002/ana.21847 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Jacobs J, Staba R, Asano E et al (2012) High-frequency oscillations (HFOs) in clinical epilepsy. Prog Neurobiol 98:302–315. doi: 10.1016/j.pneurobio.2012.03.001 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Jacobs J, Golla T, Mader M et al (2014) Electrical stimulation for cortical mapping reduces the density of high frequency oscillations. Epilepsy Res 108:1758–1769. doi: 10.1016/j.eplepsyres.2014.09.022 CrossRefPubMedGoogle Scholar
  22. Jefferys JGR, de la Prida LM, Wendling F et al (2012) Mechanisms of physiological and epileptic HFO generation. Prog Neurobiol 98:250–264. doi: 10.1016/j.pneurobio.2012.02.005 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Malinowska U, Bergey GK, Harezlak J, Jouny CC (2015) Identification of seizure onset zone and preictal state based on characteristics of high frequency oscillations. Clin Neurophysiol 126:1505–1513. doi: 10.1016/j.clinph.2014.11.007 CrossRefPubMedGoogle Scholar
  24. Matsumoto A, Brinkmann BH, Matthew Stead S et al (2013) Pathological and physiological high-frequency oscillations in focal human epilepsy. J Neurophysiol 110:1958–1964. doi: 10.1152/jn.00341.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Roehri N, Lina J, Mosher JC et al (2016) Time-frequency strategies for increasing high frequency oscillation detectability in intracerebral. IEEE Trans Biomed Eng 2:1–12. doi: 10.1109/TBME.2016.2556425 Google Scholar
  26. Staba RJ, Wilson CL, Bragin A et al (2002) Quantitative analysis of high-frequency oscillations (80–500 Hz) recorded in human epileptic hippocampus and entorhinal cortex. J Neurophysiol 88:1743–1752PubMedGoogle Scholar
  27. Staba RJ, Wilson CL, Bragin A et al (2004) High-frequency oscillations recorded in human medial temporal lobe during sleep. Ann Neurol 56:108–115. doi: 10.1002/ana.20164 CrossRefPubMedGoogle Scholar
  28. Staba RJ, Frighetto L, Behnke EJ et al (2007) Increased fast ripple to ripple ratios correlate with reduced hippocampal volumes and neuron loss in temporal lobe epilepsy patients. Epilepsia 48:2130–2138. doi: 10.1111/j.1528-1167.2007.01225.x CrossRefPubMedGoogle Scholar
  29. Worrell G a., Gardner AB, Stead SM et al (2008) High-frequency oscillations in human temporal lobe: simultaneous microwire and clinical macroelectrode recordings. Brain 131:928–937. doi: 10.1093/brain/awn006 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Worrell GA, Jerbi K, Kobayashi K et al (2012) Recording and analysis techniques for high-frequency oscillations. Prog Neurobiol 98:265–278. doi: 10.1016/j.pneurobio.2012.02.006 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Zelmann R, Mari F, Jacobs J et al (2010) Automatic detector of High frequency oscillations for human recordings with macroelectrodes. 2010 Annu Int Conf IEEE Eng Med Biol Soc EMBC’ 10:2329–2333. doi: 10.1109/IEMBS.2010.5627464 CrossRefGoogle Scholar
  32. Zelmann R, Mari F, Jacobs J et al (2012) A comparison between detectors of high frequency oscillations. Clin Neurophysiol 123:106–116. doi: 10.1016/j.clinph.2011.06.006 CrossRefPubMedGoogle Scholar
  33. Zijlmans M, Jiruska P, Zelmann R et al (2012) High-frequency oscillations as a new biomarker in epilepsy. Ann Neurol 71:169–178. doi: 10.1002/ana.22548 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biomedical Engineering, Henry Samueli School of Engineering, 3120 Natural Sciences IIUniversity of CaliforniaIrvineUSA

Personalised recommendations