Skip to main content

Advertisement

Log in

EEG Microstate Correlates of Fluid Intelligence and Response to Cognitive Training

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The neurobiological correlates of human fluid intelligence (Gf) remain elusive. Here, we demonstrate that spatiotemporal dynamics of EEG activity correlate with baseline measures of Gf and with its modulation by cognitive training. EEG dynamics were assessed in 74 healthy participants by examination of fast-changing, recurring, topographically-defined electric patterns termed “microstates”, which characterize the electrophysiological activity of distributed cortical networks. We find that the frequency of appearance of specific brain topographies, spatially associated with visual (microstate B) and executive control (microstate C) networks, respectively, is inversely related to Gf scores. Moreover, changes in Gf scores with cognitive training are inversely correlated with changes in microstate properties, indicating that the changes in brain network dynamics are behaviorally relevant. Finally, we find that cognitive training that increases Gf scores results in a posterior shift in the topography of microstate C. These results highlight the role of fast-changing brain electrical states in individual variability in Gf and in the response to cognitive training.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexander GE, Furey ML, Grady CL, Pietrini P, Brady DR, Mentis MJ, Schapiro MB (1997) Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: implications for the cognitive reserve hypothesis. Am J Psychiatry 154:165–172

    Article  CAS  PubMed  Google Scholar 

  • Aron AR, Robbins TW, Poldrack RA (2014) Inhibition and the right inferior frontal cortex: one decade on. Trends Cogn Sci 18:177–185

    Article  PubMed  Google Scholar 

  • Au J, Sheehan E, Tsai N, Duncan GJ, Buschkuehl M, Jaeggi SM (2014) Improving fluid intelligence with training on working memory: a meta-analysis. Psychon Bull Rev 22:366–377

    Article  Google Scholar 

  • Bartlett MS (1937) The statistical conception of mental factors. Br J Psychol 28:97–104

    Google Scholar 

  • Beaujean AA, Firmin MW, Michonski JD, Berry T, Johnson C (2010) A multitrait–multimethod examination of the reynolds intellectual assessment scales in a college sample. Assessment 17:347–360

    Article  PubMed  Google Scholar 

  • Benedek M, Jauk E, Sommer M, Arendasy M, Neubauer AC (2014) Intelligence, creativity, and cognitive control: the common and differential involvement of executive functions in intelligence and creativity. Intelligence 46:73–83

    Article  PubMed  PubMed Central  Google Scholar 

  • Bondarenko R, Boehler CN, Stoppel CM, Heinze HJ, Schoenfeld MA, Hopf JM (2012) Separable mechanisms underlying global feature-based attention. J Neurosci 32:15284–15295

    Article  CAS  PubMed  Google Scholar 

  • Britz J, Van De Ville D, Michel CM (2010a) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170

    Article  PubMed  Google Scholar 

  • Britz J, Van De Ville D, Michel CM (2010b) BOLD correlates of EEG topography reveal rapid resting-state network dynamics. Neuroimage 52:1162–1170

    Article  PubMed  Google Scholar 

  • Brumback CR, Low KA, Gratton G, Fabiani M (2004) Sensory ERPs predict differences in working memory span and fluid intelligence. Neuroreport 15:373–376

    Article  PubMed  Google Scholar 

  • Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 2011:813870

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgess GC, Gray JR, Conway AR, Braver TS (2011) Neural mechanisms of interference control underlie the relationship between fluid intelligence and working memory span. J Exp Psychol Gen 140:674–692

    Article  PubMed  PubMed Central  Google Scholar 

  • Buschman TJ, Siegel M, Roy JE, Miller EK (2011) Neural substrates of cognitive capacity limitations. Proc Natl Acad Sci USA 108:11252–11255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carpenter PA, Just MA, Shell P (1990) What one intelligence test measures: a theoretical account of the processing in the Raven Progressive Matrices Test. Psychol Rev 97:404–431

    Article  CAS  PubMed  Google Scholar 

  • Chiang MC, Barysheva M, Lee AD, Madsen S, Klunder AD, Toga AW, McMahon KL, de Zubicaray GI, Meredith M, Wright MJ, Srivastava A, Balov N, Thompson PM (2008) Brain fiber architecture, genetics, and intelligence: a high angular resolution diffusion imaging (HARDI) study. Med Image Comput Comput Assist Interv 11:1060–1067

    PubMed  PubMed Central  Google Scholar 

  • Choi YY, Shamosh NA, Cho SH, Deyoung CG, Lee MJ, Lee JM, Kim SI, Cho ZH, Kim K, Gray JR, Lee KH (2008) Multiple bases of human intelligence revealed by cortical thickness and neural activation. J Neurosci 28:10323–10329

    Article  CAS  PubMed  Google Scholar 

  • Cole JC, Lopez BR, Daleo DV (2004) Latent relationships of fluid, visual, and simultaneous cognitive tasks. Psychol Rep 94:547–561

    Article  PubMed  Google Scholar 

  • Cole MW, Yarkoni T, Repovs G, Anticevic A, Braver TS (2012) Global connectivity of prefrontal cortex predicts cognitive control and intelligence. J Neurosci 32:8988–8999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Colom R, Jung RE, Haier RJ (2006) Distributed brain sites for the g-factor of intelligence. Neuroimage 31:1359–1365

    Article  PubMed  Google Scholar 

  • Colom R, Karama S, Jung RE, Haier RJ (2010) Human intelligence and brain networks. Dialogues Clin Neurosci 12:489–501

    PubMed  PubMed Central  Google Scholar 

  • Colom R, Burgaleta M, Roman FJ, Karama S, Alvarez-Linera J, Abad FJ, Martinez K, Quiroga MA, Haier RJ (2013) Neuroanatomic overlap between intelligence and cognitive factors: morphometry methods provide support for the key role of the frontal lobes. Neuroimage 72:143–152

    Article  PubMed  Google Scholar 

  • Crone EA, Wendelken C, van LL, Honomichl RD, Christoff K, Bunge SA (2009) Neurocognitive development of relational reasoning. Dev Sci 12:55–66

    Article  PubMed  PubMed Central  Google Scholar 

  • da Rocha AF, Rocha FT, Massad E (2011) The brain as a distributed intelligent processing system: an EEG study. PLoS ONE 6:e17355

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF (2006) Consistent resting-state networks across healthy subjects. Proc Natl Acad Sci USA 103:13848–13853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dang CP, Braeken J, Colom R, Ferrer E, Liu C (2014) Why is working memory related to intelligence? Different contributions from storage and processing. Memory 22:426–441

    Article  PubMed  Google Scholar 

  • Deary I (2008) Why do intelligent people live longer? Nature 456:175–176

    Article  CAS  PubMed  Google Scholar 

  • Deary IJ, Penke L, Johnson W (2010) The neuroscience of human intelligence differences. Nat Rev Neurosci 11:201–211

    CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Engle RW, Tuholski SW, Laughlin JE, Conway AR (1999) Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol Gen 128:309–331

    Article  CAS  PubMed  Google Scholar 

  • Filmer HL, Dux PE, Mattingley JB (2014) Applications of transcranial direct current stimulation for understanding brain function. Trends Neurosci 37:742–753

    Article  CAS  PubMed  Google Scholar 

  • Gaspar JM, McDonald JJ (2014) Suppression of salient objects prevents distraction in visual search. J Neurosci 34:5658–5666

    Article  CAS  PubMed  Google Scholar 

  • Gazzaley A, Cooney JW, Rissman J, D’Esposito M (2005) Top-down suppression deficit underlies working memory impairment in normal aging. Nat Neurosci 8:1298–1300

    Article  CAS  PubMed  Google Scholar 

  • Gazzaley A, Rissman J, Cooney J, Rutman A, Seibert T, Clapp W, D’Esposito M (2007) Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cereb Cortex 17(Suppl 1):i125–i135

    Article  PubMed  PubMed Central  Google Scholar 

  • Goh S, Bansal R, Xu D, Hao X, Liu J, Peterson BS (2011) Neuroanatomical correlates of intellectual ability across the life span. Dev Cogn Neurosci 1:305–312

    Article  PubMed  Google Scholar 

  • Gong QY, Sluming V, Mayes A, Keller S, Barrick T, Cezayirli E, Roberts N (2005) Voxel-based morphometry and stereology provide convergent evidence of the importance of medial prefrontal cortex for fluid intelligence in healthy adults. Neuroimage 25:1175–1186

    Article  PubMed  Google Scholar 

  • Gray JR, Thompson PM (2004a) Neurobiology of intelligence: health implications? Discov Med 4:157–162

    PubMed  Google Scholar 

  • Gray JR, Thompson PM (2004b) Neurobiology of intelligence: science and ethics. Nat Rev Neurosci 5:471–482

    Article  CAS  PubMed  Google Scholar 

  • Gray JR, Chabris CF, Braver TS (2003) Neural mechanisms of general fluid intelligence. Nat Neurosci 6:316–322

    Article  CAS  PubMed  Google Scholar 

  • Haier RJ (2014) Increased intelligence is a myth (so far). Front Syst Neurosci 8:34

    Article  PubMed  PubMed Central  Google Scholar 

  • Haier RJ, Jung RE, Yeo RA, Head K, Alkire MT (2004) Structural brain variation and general intelligence. Neuroimage 23:425–433

    Article  PubMed  Google Scholar 

  • Hambrick DZ, Altmann EM (2015) The role of placekeeping ability in fluid intelligence. Psychon Bull Rev 22:1104–1110

    Article  PubMed  Google Scholar 

  • Hossiep R, Turck D, Hasella M (1999) Bochumer Matrizentest: BOMAT advanced-short version. Hogrefe, Göttingen

    Google Scholar 

  • Houde O, Zago L, Mellet E, Moutier S, Pineau A, Mazoyer B, Tzourio-Mazoyer N (2000) Shifting from the perceptual brain to the logical brain: the neural impact of cognitive inhibition training. J Cogn Neurosci 12:721–728

    Article  CAS  PubMed  Google Scholar 

  • Jacob SN, Nieder A (2014) Complementary roles for primate frontal and parietal cortex in guarding working memory from distractor stimuli. Neuron 83:226–237

    Article  CAS  PubMed  Google Scholar 

  • Jaeggi SM, Buschkuehl M, Jonides J, Perrig WJ (2008) Improving fluid intelligence with training on working memory. Proc Natl Acad Sci USA 105:6829–6833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jung RE, Haier RJ (2007) The Parieto-Frontal Integration Theory (P-FIT) of intelligence: converging neuroimaging evidence. Behav Brain Sci 30:135–154

    Article  PubMed  Google Scholar 

  • Kaiser FH (1958) The varimax criterion for analytic rotation in factor analysis. Psychometrika 23:187–200

    Article  Google Scholar 

  • Khanna A, Pascual-Leone A, Farzan F (2014) Reliability of resting-state microstate features in electroencephalography. PLoS ONE 9:e114163

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Khanna A, Pascual-Leone A, Michel CM, Farzan F (2015) Microstates in resting-state EEG: current status and future directions. Neurosci Biobehav Rev 49:105–113

    Article  PubMed  Google Scholar 

  • Kievit RA, Davis SW, Mitchell DJ, Taylor JR, Duncan J, Henson RN (2014) Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking. Nat Commun 5:5658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koenig T, Lehmann D (1996) Microstates in language-related brain potential maps show noun-verb differences. Brain Lang 53:169–182

    Article  CAS  PubMed  Google Scholar 

  • Koenig T, Melie-Garcia L (2009) Statistical analysis of multichannel scalp field data. In: Koenig T, Melie-Garcia L, Electrical neuroimaging. Cambridge University, Cambridge 53:169–190

    Chapter  Google Scholar 

  • Koenig T, Kochi K, Lehmann D,(1998) Event-related electric microstates of the brain differ between words with visual and abstract meaning. Electroencephalogr Clin Neurophysiol 106:535–546

    Article  CAS  PubMed  Google Scholar 

  • Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, Isenhart R, John ER (2002) Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. Neuroimage 16:41–48

    Article  PubMed  Google Scholar 

  • Kundu B, Sutterer DW, Emrich SM, Postle BR (2013) Strengthened effective connectivity underlies transfer of working memory training to tests of short-term memory and attention. J Neurosci 33:8705–8715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kush JC, Spring MB, Barkand J (2012) Advances in the assessment of cognitive skills using computer-based measurement. Behav Res Methods 44:125–134

    Article  PubMed  Google Scholar 

  • Lancaster JL, Woldorff MG, Parsons LM, Liotti M, Freitas CS, Rainey L, Kochunov PV, Nickerson D, Mikiten SA, Fox PT (2000) Automated Talairach atlas labels for functional brain mapping. Hum Brain Mapp 10(3):120–131

    Article  CAS  PubMed  Google Scholar 

  • Langer N, von Bastian CC, Wirz H, Oberauer K, Jancke L (2013) The effects of working memory training on functional brain network efficiency. Cortex 49:2424–2438

    Article  PubMed  Google Scholar 

  • Lehmann D (1971) Multichannel topography of human alpha EEG fields. Electroencephalogr Clin Neurophysiol 31:439–449

    Article  CAS  PubMed  Google Scholar 

  • Lehmann D, Faber PL, Galderisi S, Herrmann WM, Kinoshita T, Koukkou M, Mucci A, Pascual-Marqui RD, Saito N, Wackermann J, Winterer G, Koenig T (2005) EEG microstate duration and syntax in acute, medication-naive, first-episode schizophrenia: a multi-center study. Psychiatry Res 138:141–156

    Article  PubMed  Google Scholar 

  • Malhotra P, Coulthard EJ, Husain M (2009) Role of right posterior parietal cortex in maintaining attention to spatial locations over time. Brain 132:645–660

    Article  PubMed  PubMed Central  Google Scholar 

  • Martinez A, Anllo-Vento L, Sereno MI, Frank LR, Buxton RB, Dubowitz DJ, Wong EC, Hinrichs H, Heinze HJ, Hillyard SA (1999) Involvement of striate and extrastriate visual cortical areas in spatial attention. Nat Neurosci 2:364–369

    Article  CAS  PubMed  Google Scholar 

  • Matsuda O, Saito M (1998) Crystallized and fluid intelligence in elderly patients with mild dementia of the Alzheimer type. Int Psychogeriatr 10:147–154

    Article  CAS  PubMed  Google Scholar 

  • Matzen LE, Benz ZO, Dixon KR, Posey J, Kroger JK, Speed AE (2010) Recreating Raven’s: software for systematically generating large numbers of Raven-like matrix problems with normed properties. Behav Res Methods 42:525–541

    Article  PubMed  Google Scholar 

  • Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K et al (2001) A four-dimensional probabilistic atlas of the human brain. J Am Med Inf Assoc, 8(5):401–430

    Article  CAS  Google Scholar 

  • Melara RD, Tong Y, Rao A (2012) Control of working memory: effects of attention training on target recognition and distractor salience in an auditory selection task. Brain Res 1430:68–77

    Article  CAS  PubMed  Google Scholar 

  • Melnick MD, Harrison BR, Park S, Bennetto L, Tadin D (2013) A strong interactive link between sensory discriminations and intelligence. Curr Biol 23:1013–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michel CM, Lehmann D (1993) Single doses of piracetam affect 42-channel event-related potential microstate maps in a cognitive paradigm. Neuropsychobiology 28:212–221

    Article  CAS  PubMed  Google Scholar 

  • Micheloyannis S, Pachou E, Stam CJ, Vourkas M, Erimaki S, Tsirka V (2006) Using graph theoretical analysis of multi channel EEG to evaluate the neural efficiency hypothesis. Neurosci Lett 402:273–277

    Article  CAS  PubMed  Google Scholar 

  • Milz P, Faber PL, Lehmann D, Koenig T, Kochi K, Pascual-Marqui RD (2015) The functional significance of EEG microstates-associations with modalities of thinking. Neuroimage 125:643–656

    Article  PubMed  Google Scholar 

  • Mognon A, Jovicich J, Bruzzone L, Buiatti M (2011) ADJUST: an automatic EEG artifact detector based on the joint use of spatial and temporal features. Psychophysiology 48:229–240

    Article  PubMed  Google Scholar 

  • Moody S (2009) Can intelligence be increased by training on a task of working memory? Intelligence 7:327–328

    Article  Google Scholar 

  • Narr KL, Woods RP, Thompson PM, Szeszko P, Robinson D, Dimtcheva T, Gurbani M, Toga AW, Bilder RM (2007) Relationships between IQ and regional cortical gray matter thickness in healthy adults. Cereb Cortex 17:2163–2171

    Article  PubMed  Google Scholar 

  • Neubauer AC, Fink A (2009) Intelligence and neural efficiency. Neurosci Biobehav Rev 33:1004–1023

  • Neubauer AC, Grabner RH, Freudenthaler HH, Beckmann JF, Guthke J (2004) Intelligence and individual differences in becoming neurally efficient. Acta Psychol 116:55–74

    Article  Google Scholar 

  • Nichols TE, Holmes AP (2002) Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum Brain Mapp 15(1):1–25

    Article  PubMed  Google Scholar 

  • Nishida K, Morishima Y, Yoshimura M, Isotani T, Irisawa S, Jann K, Dierks T, Strik W, Kinoshita T, Koenig T (2013) EEG microstates associated with salience and frontoparietal networks in frontotemporal dementia, schizophrenia and Alzheimer’s disease. Clin Neurophysiol 124(6):1106–1114

    Article  PubMed  Google Scholar 

  • Oelhafen S, Nikolaidis A, Padovani T, Blaser D, Koenig T, Perrig WJ (2013) Increased parietal activity after training of interference control. Neuropsychologia 51:2781–2790

    Article  PubMed  Google Scholar 

  • Pahor A, Jausovec N (2014) The effects of theta transcranial alternating current stimulation (tACS) on fluid intelligence. Int J Psychophysiol 93:322–331

    Article  PubMed  Google Scholar 

  • Pascual-Marqui RD (2007) Discrete, 3D distributed, linear imaging methods of electric neuronal activity. Part 1: exact, zero error localization. arXiv:0710.3341 [Math-Ph, Physics:physics, Q-Bio], October

  • Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Marqui RD, Lehmann D, Faber P, Milz P, Kochi K, Yoshimura M, Nishida K, Isotani T, Kinoshita T (2014) The resting microstate networks (RMN): cortical distributions, dynamics, and frequency specific information flow. http://arxiv.org/abs/1411.1949v2

  • Pereira J, Wang XJ (2015) A tradeoff between accuracy and flexibility in a working memory circuit endowed with slow feedback mechanisms. Cereb Cortex 25:3586–3601

    Article  PubMed  Google Scholar 

  • Perfetti B, Saggino A, Ferretti A, Caulo M, Romani GL, Onofrj M (2009) Differential patterns of cortical activation as a function of fluid reasoning complexity. Hum Brain Mapp 30:497–510

    Article  PubMed  Google Scholar 

  • Peters JC, Roelfsema PR, Goebel R (2012) Task-relevant and accessory items in working memory have opposite effects on activity in extrastriate cortex. J Neurosci 32:17003–17011

    Article  CAS  PubMed  Google Scholar 

  • Prado J, Noveck IA (2007) Overcoming perceptual features in logical reasoning: a parametric functional magnetic resonance imaging study. J Cogn Neurosci 19:642–657

    Article  PubMed  Google Scholar 

  • Prado J, Kaliuzhna M, Cheylus A, Noveck IA (2008) Overcoming perceptual features in logical reasoning: an event-related potentials study. Neuropsychologia 46:2629–2637

    Article  PubMed  Google Scholar 

  • Prado J, Van Der Henst JB, Noveck IA (2010) Recomposing a fragmented literature: how conditional and relational arguments engage different neural systems for deductive reasoning. Neuroimage 51:1213–1221

    Article  PubMed  Google Scholar 

  • Raven J, Raven JC, Court JH (2003) Manual for Raven’s progressive matrices and vocabulary scales. Section 1: general overview. Harcourt Assessment, San Antonia

    Google Scholar 

  • Raz N, Lindenberger U, Ghisletta P, Rodrigue KM, Kennedy KM, Acker JD (2008) Neuroanatomical correlates of fluid intelligence in healthy adults and persons with vascular risk factors. Cereb Cortex 18:718–726

    Article  PubMed  Google Scholar 

  • Rushton JP, Ankney CD (2009) Whole brain size and general mental ability: a review. Int J Neurosci 119:691–731

    Article  PubMed  Google Scholar 

  • Santarnecchi E, Rossi S (2016b) Advances in the neuroscience of intelligence: from brain connectivity to brain perturbation. Span J Psychol. doi:10.1017/sjp.2016.89

    PubMed  Google Scholar 

  • Santarnecchi E, Polizzotto NR, Godone M, Giovannelli F, Feurra M, Matzen L, Rossi A, Rossi S (2013) Frequency-dependent enhancement of fluid intelligence induced by transcranial oscillatory potentials. Curr Biol 23:1449–1453

    Article  CAS  PubMed  Google Scholar 

  • Santarnecchi E, Galli G, Polizzotto NR, Rossi A, Rossi S (2014) Efficiency of weak brain connections support general cognitive functioning. Hum Brain Mapp 35:4566–4582

    Article  PubMed  Google Scholar 

  • Santarnecchi E, Brem AK, Levenbaum E, Thompson T, Kadosh RC, Pascual-Leone A (2015a) Enhancing cognition using transcranial electrical stimulation. Curr Opin Behav Sci 4:171–178

    Article  Google Scholar 

  • Santarnecchi E, Rossi S, Rossi A (2015b) The smarter, the stronger: intelligence level correlates with brain resilience to systematic insults. Cortex 64:293–309

    Article  PubMed  Google Scholar 

  • Santarnecchi E, Tatti E, Rossi S, Serino V, Rossi A (2015c) Intelligence-related differences in the asymmetry of spontaneous cerebral activity. Hum Brain Mapp 36:3586–3602

    Article  PubMed  Google Scholar 

  • Santarnecchi E, Muller T, Rossi S, Sarkar A, Polizzotto NR, Rossi A, Kadosh RC (2016a) Individual differences and specificity of prefrontal gamma frequency-tACS on fluid intelligence capabilities. Cortex 23:1449–1453

    Google Scholar 

  • Sitaram R, Ros T, Stoeckel L, Haller S, Scharnowski F, Lewis-Peacock J, Weiskopf N et al (2016) Closed-loop brain training: the science of neurofeedback. Nat Rev Neurosci 18(2):86–100

    Article  PubMed  CAS  Google Scholar 

  • Soulieres I, Dawson M, Samson F, Barbeau EB, Sahyoun CP, Strangman GE, Zeffiro TA, Mottron L (2009) Enhanced visual processing contributes to matrix reasoning in autism. Hum Brain Mapp 30:4082–4107

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern Y (2002) What is cognitive reserve? Theory and research application of the reserve concept. J Int Neuropsychol Soc 8:448–460

    Article  PubMed  Google Scholar 

  • Stern Y (2009) Cognitive reserve. Neuropsychologia 47:2015–2028

    Article  PubMed  PubMed Central  Google Scholar 

  • Thompson TW, Waskom ML, Garel KL, Cardenas-Iniguez C, Reynolds GO, Winter R, Chang P, Pollard K, Lala N, Alvarez GA, Gabrieli JD (2013) Failure of working memory training to enhance cognition or intelligence. PLoS ONE 8:e63614

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tibshirania R, Walther G (2005) Cluster validation by prediction strength. J Comput Graph Stat 14:511–528

    Article  Google Scholar 

  • Tomescu MI, Rihs TA, Becker R, Britz J, Custo A, Grouiller F, Schneider M, Debbane M, Eliez S, Michel CM (2014) Deviant dynamics of EEG resting state pattern in 22q11.2 deletion syndrome adolescents: a vulnerability marker of schizophrenia? Schizophr Res 157:175–181

    Article  PubMed  Google Scholar 

  • Vakhtin AA, Ryman SG, Flores RA, Jung RE (2014) Functional brain networks contributing to the Parieto-Frontal Integration Theory of Intelligence. Neuroimage 103:349–354

    Article  PubMed  Google Scholar 

  • Van De Ville D, Britz J, Michel CM (2010) EEG microstate sequences in healthy humans at rest reveal scale-free dynamics. Proc Natl Acad Sci USA 107:18179–18184

    Article  PubMed  Google Scholar 

  • van den Heuvel MP, Stam CJ, Kahn RS, Hulshoff Pol HE (2009) Efficiency of functional brain networks and intellectual performance. J Neurosci 29:7619–7624

    Article  PubMed  CAS  Google Scholar 

  • Verney SP, Granholm E, Marshall SP, Malcarne VL, Saccuzzo DP (2005) Culture-fair cognitive ability assessment: information processing and psychophysiological approaches. Assessment 12:303–319

    Article  PubMed  Google Scholar 

  • Wartenburger I, Heekeren HR, Preusse F, Kramer J, van der Meer E (2009) Cerebral correlates of analogical processing and their modulation by training. Neuroimage 48:291–302

    Article  PubMed  Google Scholar 

  • Whalley LJ, Deary IJ, Appleton CL, Starr JM (2004) Cognitive reserve and the neurobiology of cognitive aging. Ageing Res Rev 3:369–382

    Article  PubMed  Google Scholar 

  • Yuan Z, Qin W, Wang D, Jiang T, Zhang Y, Yu C (2012) The salience network contributes to an individual’s fluid reasoning capacity. Behav Brain Res 229:384–390

    Article  PubMed  Google Scholar 

  • Zhang G, Yao L, Shen J, Yang Y, Zhao X (2015) Reorganization of functional brain networks mediates the improvement of cognitive performance following real-time neurofeedback training of working memory: brain networks mediate post-training behavior. Hum Brain Mapp 36(5):1705–1715

    Article  PubMed  Google Scholar 

  • Zook NA, Davalos DB, Delosh EL, Davis HP (2004) Working memory, inhibition, and fluid intelligence as predictors of performance on Tower of Hanoi and London tasks. Brain Cogn 56:286–292

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This research is based upon work supported by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), via 2014-13121700007. The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of the ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Governmental purposes notwithstanding any copyright annotation thereon. Dr. Pascual-Leone is further supported by the Berenson-Allen Foundation, the Sidney R. Baer Jr. Foundation, grants from the National Institutes of Health (R01HD069776, R01NS073601, R21 MH099196, R21 NS082870, R21 NS085491, R21 HD07616), and Harvard Catalyst | The Harvard Clinical and Translational Science Center (NCRR and the NCATS NIH, UL1 RR025758). The content of this paper is solely the responsibility of the authors and does not necessarily represent the official views of Harvard Catalyst, Harvard University and its affiliated academic health care centers, the National Institutes of Health, the Sidney R. Baer Jr. Foundation. The authors would like to thank the members of the larger Honeywell SHARP team for their valuable contributions to this work, including the SHARP Team authors: Harvard Medical School (Ann Connor, Franziska Plessow, Sadhvi Saxena, Erica Levenbaum); Honeywell (Jessamy Almquist, Michael Dillard, Umut Orhan, Santosh Mathan); Northeastern University (James McKanna, Deniz Erdogmus, Misha Pavel); Oxford University (Anna-Katharine Brem, Roi Cohen Kadosh, Nick Yeung); SimCoach Games (Garrett Kimball, Eben Myers).

Author information

Authors and Affiliations

Authors

Consortia

Corresponding author

Correspondence to Mouhsin M. Shafi.

Additional information

Emiliano Santarnecchi and Arjun R. Khanna contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 47 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santarnecchi, E., Khanna, A.R., Musaeus, C.S. et al. EEG Microstate Correlates of Fluid Intelligence and Response to Cognitive Training. Brain Topogr 30, 502–520 (2017). https://doi.org/10.1007/s10548-017-0565-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-017-0565-z

Keywords

Navigation