Babiloni C et al (2006) Frontal white matter volume and delta EEG sources negatively correlate in awake subjects with mild cognitive impairment and Alzheimer’s disease. Clin Neurophysiol 117:1113–1129
Article
PubMed
Google Scholar
Bates ME, Lemay EP (2004) The d2 test of attention: construct validity and extensions in scoring techniques. J Int Neuropsychol Soc 10:392–400
Article
PubMed
Google Scholar
Bekhtereva V, Sander C, Forschack N, Olbrich S, Hegerl U, Müller MM (2014) Effects of EEG-vigilance regulation patterns on early perceptual processes in human visual cortex. Clin Neurophysiol 125:98–107. doi:10.1016/j.clinph.2013.06.019
Article
PubMed
Google Scholar
Bogler C, Mehnert J, Steinbrink J, Haynes J-D (2014) Decoding vigilance with NIRS
Brickenkamp R, Zillmer E (1998) The d2 test of attention (1st US ed.). Hogrefe & Huber Publishers, Cambridge
Google Scholar
Caggiano DM, Parasuraman R (2004) The role of memory representation in the vigilance decrement. Psychon Bull Rev 11:932–937
Article
PubMed
PubMed Central
Google Scholar
Corbetta M, Miezin FM, Dobmeyer S, Shulman GL, Petersen SE (1991) Selective and divided attention during visual discriminations of shape, color, and speed: functional anatomy by positron emission tomography. J Neurosci 11:2383–2402
CAS
PubMed
Google Scholar
Corbetta M, Kincade JM, Ollinger JM, McAvoy MP, Shulman GL (2000) Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nature Neurosci 3:292–297
CAS
Article
PubMed
Google Scholar
Corbetta M, Kincade J, Shulman G (2002) Neural systems for visual orienting and their relationships to spatial working memory Cognitive. J Neurosci 14:508–523
Google Scholar
Corbetta M, Patel G, Shulman GL (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–324
CAS
Article
PubMed
PubMed Central
Google Scholar
Corkum PV, Siegel LS (1993) Is the continuous performance task a valuable research tool for use with children with Attention-Deficit-Hyperactivity Disorder? J Child Psychol Psychiatry 34:1217–1239
CAS
Article
PubMed
Google Scholar
Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI The. J Neurosci 18:7426–7435
CAS
PubMed
Google Scholar
Coull J, Frith C, Frackowiak RSJ, Grasby P (1996) A fronto-parietal network for rapid visual information processing: a PET study of sustained attention and working memory. Neuropsychologia 34:1085–1095
CAS
Article
PubMed
Google Scholar
de Jong T, van Joolingen WR (1998) Scientific discovery learning with computer simulations of conceptual domains. Rev Edu Res 68:179–201
Google Scholar
DeGangi G, Porges S (1990) Neuroscience foundations of human performance Rockville, American Occupational Therapy Association Inc., Bethesda
Google Scholar
Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. Annu Rev Neurosci 18:193–222
CAS
Article
PubMed
Google Scholar
Dockree PM, Kelly SP, Foxe JJ, Reilly RB, Robertson IH (2007) Optimal sustained attention is linked to the spectral content of background EEG activity: greater ongoing tonic alpha (∼10 Hz) power supports successful phasic goal activation. Eur J Neurosci 25:900–907
Article
PubMed
Google Scholar
Drechsler R, Straub M, Doehnert M, Heinrich H, Steinhausen HC, Brandeis D (2007) Controlled evaluation of a neurofeedback training of slow cortical potentials in children with attention deficit/hyperactivity disorder (ADHD). Behav Brain Funct 3:35
Article
PubMed
PubMed Central
Google Scholar
Dussault C, Jouanin J-C, Philippe M, Guezennec C-Y (2005) EEG and ECG changes during simulator operation reflect mental workload and vigilance. Aviat Space Environ Med 76:344–351
PubMed
Google Scholar
Egeth HE, Yantis S (1997) Visual attention: control, representation, and time course. Annu Rev Psychol 48:269–297
CAS
Article
PubMed
Google Scholar
Freeman FG, Mikulka PJ, Scerbo MW, Scott L (2004) An evaluation of an adaptive automation system using a cognitive vigilance task. Biol Psychol 67:283–297
Article
PubMed
Google Scholar
Fuchs M, Kastner J, Wagner M, Hawes S, Ebersole JS (2002) A standardized boundary element method volume conductor model. Clin Neurophysiol 113:702–712
Article
PubMed
Google Scholar
Gevins A, Smith ME, McEvoy L, Yu D (1997) High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practice. Cerebral cortex 7:374–385
CAS
Article
PubMed
Google Scholar
Harmony T et al. (1996) EEG delta activity: an indicator of attention to internal processing during performance of mental tasks. Int J Psychophysiol 24:161–171
CAS
Article
PubMed
Google Scholar
He BJ, Snyder AZ, Vincent JL, Epstein A, Shulman GL, Corbetta M (2007) Breakdown of functional connectivity in frontoparietal networks underlies behavioral deficits in spatial neglect. Neuron 53:905–918
CAS
Article
PubMed
Google Scholar
Hinds O, Thompson TW, Ghosh S, Yoo JJ, Whitfield-Gabrieli S, Triantafyllou C, Gabrieli JDE (2013) Roles of default-mode network and supplementary motor area in human vigilance performance: evidence from real-time fMRI. J Neurophysiol 109:1250–1258. doi:10.1152/jn.00533.2011
CAS
Article
PubMed
Google Scholar
Hopfinger J, Buonocore M, Mangun G (2000) The neural mechanisms of top-down attentional control. Nature Neurosci 3:284–291
CAS
Article
PubMed
Google Scholar
Ishii R et al (1999) Medial prefrontal cortex generates frontal midline theta rhythm. Neuroreport 10:675–679
CAS
Article
PubMed
Google Scholar
Kastner S, Pinsk MA, De Weerd P, Desimone R, Ungerleider LG (1999) Increased activity in human visual cortex during directed attention in the absence of visual stimulation. Neuron 22:751–761
CAS
Article
PubMed
Google Scholar
Kelly SP, Lalor EC, Reilly RB, Foxe JJ (2006) Increases in alpha oscillatory power reflect an active retinotopic mechanism for distracter suppression during sustained visuospatial attention. J Neurophysiol 95:3844–3851
Article
PubMed
Google Scholar
Kincade JM, Abrams RA, Astafiev SV, Shulman GL, Corbetta M (2005) An event-related functional magnetic resonance imaging study of voluntary and stimulus-driven orienting of attention. J Neurosci 25:4593–4604
CAS
Article
PubMed
Google Scholar
Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29:169–195
CAS
Article
PubMed
Google Scholar
Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cognit Sci 16:606–617
Article
Google Scholar
Lawrence N, Ross T, Hoffmann R, Garavan H, Stein E (2003) Multiple neuronal networks mediate sustained attention Cognitive. J Neurosci 15:1028–1038
Google Scholar
Mackworth JF (1964) Performance decrement in vigilance, threshold, and high-speed perceptual motor tasks. Can J Psychol/Rev canadienne de psychologie 18:209
CAS
Article
Google Scholar
Oken BS, Salinsky MC, Elsas SM (2006) Vigilance, alertness, or sustained attention: physiological basis and measurement. Clin Neurophysiol 117:1885–1901. doi:10.1016/j.clinph.2006.01.017
CAS
Article
PubMed
PubMed Central
Google Scholar
Olbrich S, Mulert C, Karch S, Trenner M, Leicht G, Pogarell O, Hegerl U (2009) EEG-vigilance and BOLD effect during simultaneous EEG/fMRI measurement. Neuroimage 45:319–332
Article
PubMed
Google Scholar
Parasuraman R (1979) Memory load and event rate control sensitivity decrements in sustained attention. Science 205:924–927
CAS
Article
PubMed
Google Scholar
Park JY, Jhung K, Lee J, An SK (2013) Theta-gamma coupling during a working memory task as compared to a simple vigilance task. Neurosci Lett 532:39–43. doi:10.1016/j.neulet.2012.10.061
CAS
Article
PubMed
Google Scholar
Pascual-Marqui R (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods Find Exp Clin Pharmacol 24:5–12
PubMed
Google Scholar
Paus T, Zatorre RJ, Hofle N, Caramanos Z, Gotman J, Petrides M, Evans AC (1997) Time-related changes in neural systems underlying attention and arousal during the performance of an auditory vigilance task. J Cogn Neurosci 9:392–408
CAS
Article
PubMed
Google Scholar
Rueckert L, Baboorian D, Stavropoulos K, Yasutake C (1999) Individual differences in callosal efficiency: correlation with attention. Brain Cogn 41:390–410
CAS
Article
PubMed
Google Scholar
Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res Rev 35:146–160
CAS
Article
PubMed
Google Scholar
Sauseng P, Hoppe J, Klimesch W, Gerloff C, Hummel F (2007) Dissociation of sustained attention from central executive functions: local activity and interregional connectivity in the theta range. Eur J Neurosci 25:587–593
CAS
Article
PubMed
Google Scholar
Smit AS, Eling PA, Coenen AM (2004) Mental effort affects vigilance enduringly: after-effects in EEG and behavior. Int J Psychophysiol 53:239–243
Article
PubMed
Google Scholar
Smit AS, Eling PA, Hopman MT, Coenen AM (2005) Mental and physical effort affect vigilance differently. Int J Psychophysiol 57:211–217
Article
PubMed
Google Scholar
Song J et al (2015) EEG source localization: sensor density and head surface coverage. J Neurosci Methods 256:9–21. doi:10.1016/j.jneumeth.2015.08.015
Article
PubMed
Google Scholar
Treisman AM, Gelade G (1980) A feature-integration theory of attention. Cognit Psychol 12:97–136
CAS
Article
PubMed
Google Scholar
Wright RD, Ward LM (2008) Orienting of attention. Oxford University Press, Oxford
Google Scholar