Brain Topography

, Volume 30, Issue 2, pp 257–271 | Cite as

Seizure Onset Zone Localization from Ictal High-Density EEG in Refractory Focal Epilepsy

  • Willeke StaljanssensEmail author
  • Gregor Strobbe
  • Roel Van Holen
  • Gwénaël Birot
  • Markus Gschwind
  • Margitta Seeck
  • Stefaan Vandenberghe
  • Serge Vulliémoz
  • Pieter van Mierlo
Original Paper


Epilepsy surgery is the most efficient treatment option for patients with refractory epilepsy. Before surgery, it is of utmost importance to accurately delineate the seizure onset zone (SOZ). Non-invasive EEG is the most used neuroimaging technique to diagnose epilepsy, but it is hard to localize the SOZ from EEG due to its low spatial resolution and because epilepsy is a network disease, with several brain regions becoming active during a seizure. In this work, we propose and validate an approach based on EEG source imaging (ESI) combined with functional connectivity analysis to overcome these problems. We considered both simulations and real data of patients. Ictal epochs of 204-channel EEG and subsets down to 32 channels were analyzed. ESI was done using realistic head models and LORETA was used as inverse technique. The connectivity pattern between the reconstructed sources was calculated, and the source with the highest number of outgoing connections was selected as SOZ. We compared this algorithm with a more straightforward approach, i.e. selecting the source with the highest power after ESI as the SOZ. We found that functional connectivity analysis estimated the SOZ consistently closer to the simulated EZ/RZ than localization based on maximal power. Performance, however, decreased when 128 electrodes or less were used, especially in the realistic data. The results show the added value of functional connectivity analysis for SOZ localization, when the EEG is obtained with a high-density setup. Next to this, the method can potentially be used as objective tool in clinical settings.


High-density electroencephalogram (hd-EEG) EEG source imaging (ESI) Functional connectivity Granger causality Refractory epilepsy 



The research was funded by a Ph.D. grant of the Institute for the Promotion of Innovation through Science and Technology in Flanders (IWT). We acknowledge the support of the Swiss National Science Foundation, Grant No. 33CM30-140332 (G. Birot, M. Seeck), 141165 (S. Vulliémoz) and the Foundation Gertrude von Meissner (S. Vulliémoz). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie Grant No. 660230 (P. van Mierlo).


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control 19(6):716–723CrossRefGoogle Scholar
  2. Arnold M, Milner X, Witte H, Bauer R, Braun C (1998) Adaptive AR modeling of nonstationary time series by means of Kalman filtering. IEEE Trans Biomed Eng 45(5):553–562CrossRefPubMedGoogle Scholar
  3. Assaf BA, Ebersole JS (1997) Continuous source imaging of scalp ictal rhythms in temporal lobe epilepsy. Epilepsia 38(10):1114–1123CrossRefPubMedGoogle Scholar
  4. Astolfi L, Cincotti F, Mattia D, de Vico Fallani F, Tocci A, Colosimo A, Salinari S, Marciani MG, Hesse W, Witte H et al (2008) Tracking the time-varying cortical connectivity patterns by adaptive multivariate estimators. IEEE Trans Biomed Eng 55(3):902–913CrossRefPubMedGoogle Scholar
  5. Baillet S, Mosher JC, Leahy RM (2001) Electromagnetic brain mapping. IEEE Signal Process Mag 18(6):14–30CrossRefGoogle Scholar
  6. Bastos AM, Schoffelen JM (2015) A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. Front Syst Neurosci 9:1–23Google Scholar
  7. Baumann SB, Wozny DR, Kelly SK, Meno FM (1997) The electrical conductivity of human cerebrospinal fluid at body temperature. IEEE Trans Biomed Eng 44(3):220–223CrossRefPubMedGoogle Scholar
  8. Boon P, D’Havé M, Vanrumste B, Van Hoey G, Vonck K, Van Walleghem P, Caemaert J, Achten E, De Reuck J (2002) Ictal source localization in presurgical patients with refractory epilepsy. J Clin Neurophysiol 19(5):461–468CrossRefPubMedGoogle Scholar
  9. Brodbeck V, Spinelli L, Lascano AM, Wissmeier M, Vargas MI, Vulliémoz S, Pollo C, Schaller K, Michel CM, Seeck M (2011) Electroencephalographic source imaging: a prospective study of 152 operated epileptic patients. Brain 134(10):2887–2897CrossRefPubMedPubMedCentralGoogle Scholar
  10. Brovelli A, Chicharro D, Badier JM, Wang H, Jirsa V (2015) Characterization of cortical networks and corticocortical functional connectivity mediating arbitrary visuomotor mapping. J Neurosci 35(37):12643–12658CrossRefPubMedGoogle Scholar
  11. Carrette E, Vonck K, Boon P (2011) The management of pharmacologically refractory epilepsy. Int J of Clin Rev 1(02):104–121Google Scholar
  12. Clarke C, Janday B (1989) The solution of the biomagnetic inverse problem by maximum statistical entropy. Inverse Probl 5(4):483CrossRefGoogle Scholar
  13. Coito A, Genetti M, Pittau F, Iannotti GR, Thomschewski A, Höller Y, Trinka E, Wiest R, Seeck M, Michel CM et al (2016) Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: a high density EEG study. Epilepsia 57(3):402–411CrossRefPubMedGoogle Scholar
  14. Coito A, Plomp G, Genetti M, Abela E, Wiest R, Seeck M, Michel CM, Vulliémoz S (2015) Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 56(2):207–217CrossRefPubMedGoogle Scholar
  15. Dalal SS, Rampp S, Willomitzer F, Ettl S (2014) Consequences of EEG electrode position error on ultimate beamformer source reconstruction performance. Front Neurosci 8:42CrossRefPubMedPubMedCentralGoogle Scholar
  16. de Tisi J, Bell GS, Peacock JL, McEvoy AW, Harkness WF, Sander JW, Duncan JS (2011) The long-term outcome of adult epilepsy surgery, patterns of seizure remission, and relapse: a cohort study. Lancet 378(9800):1388–1395CrossRefPubMedGoogle Scholar
  17. Ding L, He B (2006) Spatio-temporal EEG source localization using a three-dimensional subspace fine approach in a realistic geometry inhomogeneous head model. IEEE Trans Biomed Eng 53(9):1732–1739CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ding L, Worrell GA, Lagerlund TD, He B (2007) Ictal source analysis: localization and imaging of causal interactions in humans. Neuroimage 34(2):575–586CrossRefPubMedGoogle Scholar
  19. Ebersole JS (2000) Noninvasive localization of epileptogenic foci by EEG source modeling. Epilepsia 41(s3):S24–S33CrossRefPubMedGoogle Scholar
  20. Elshoff L, Muthuraman M, Anwar AR, Deuschl G, Stephani U, Raethjen J, Siniatchkin M (2013) Dynamic imaging of coherent sources reveals different network connectivity underlying the generation and perpetuation of epileptic seizures. PloS ONE 8(10):e78422CrossRefPubMedPubMedCentralGoogle Scholar
  21. Golub GH, Reinsch C (1970) Singular value decomposition and least squares solutions. Numer Math 14(5):403–420CrossRefGoogle Scholar
  22. Groß J, Kujala J, Hämäläinen M, Timmermann L, Schnitzler A, Salmelin R (2001) Dynamic imaging of coherent sources: studying neural interactions in the human brain. Proc Natl Acad Sci 98(2):694–699CrossRefPubMedPubMedCentralGoogle Scholar
  23. Groß J, Timmermann L, Kujala J, Dirks M, Schmitz F, Salmelin R, Schnitzler A (2002) The neural basis of intermittent motor control in humans. Proc Natl Acad Sci 99(4):2299–2302CrossRefPubMedPubMedCentralGoogle Scholar
  24. Grova C, Daunizeau J, Lina JM, Bénar CG, Benali H, Gotman J (2006) Evaluation of EEG localization methods using realistic simulations of interictal spikes. Neuroimage 29(3):734–753CrossRefPubMedGoogle Scholar
  25. Haalman I, Vaadia E (1997) Dynamics of neuronal interactions: relation to behavior, firing rates, and distance between neurons. Hum Brain Mapp 5(4):249–253CrossRefPubMedGoogle Scholar
  26. Habib MA, Ibrahim F, Mohktar MS, Kamaruzzaman SB, Rahmat K, Lim KS (2015) Ictal EEG source imaging for presurgical evaluation of refractory focal epilepsy. World Neurosurg 88:576–585CrossRefPubMedGoogle Scholar
  27. Hallez H, Vanrumste B, Van Hese P, D’Asseler Y, Lemahieu I, Van de Walle R (2005) A finite difference method with reciprocity used to incorporate anisotropy in electroencephalogram dipole source localization. Phys Med Biol 50(16):3787CrossRefPubMedGoogle Scholar
  28. Hillebrand A, Barnes GR, Bosboom JL, Berendse HW, Stam CJ (2012) Frequency-dependent functional connectivity within resting-state networks: an atlas-based MEG beamformer solution. Neuroimage 59(4):3909–3921CrossRefPubMedPubMedCentralGoogle Scholar
  29. Jayakar P, Duchowny M, Resnick TJ, Alvarez LA (1991) Localization of seizure foci: pitfalls and caveats. J Clin Neurophysiol 8(4):414–431CrossRefPubMedGoogle Scholar
  30. Jung KY, Kang JK, Kim JH, Im CH, Kim KH, Jung HK (2009) Spatiotemporospectral characteristics of scalp ictal EEG in mesial temporal lobe epilepsy with hippocampal sclerosis. Brain Res 1287:206–219CrossRefPubMedGoogle Scholar
  31. Koessler L, Benar C, Maillard L, Badier JM, Vignal JP, Bartolomei F, Chauvel P, Gavaret M (2010) Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage 51(2):642–653CrossRefPubMedGoogle Scholar
  32. Lantz G, de Peralta RG, Spinelli L, Seeck M, Michel CM (2003) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114(1):63–69CrossRefPubMedGoogle Scholar
  33. Lantz G, Michel CM, Seeck M, Blanke O, Landis T, Rosén I (1999) Frequency domain EEG source localization of ictal epileptiform activity in patients with partial complex epilepsy of temporal lobe origin. Clin Neurophysiol 110(1):176–184CrossRefPubMedGoogle Scholar
  34. Lopez J, Litvak V, Espinosa J, Friston K, Barnes GR (2014) Algorithmic procedures for bayesian meg/eeg source reconstruction in spm. Neuroimage 84:476–487CrossRefPubMedPubMedCentralGoogle Scholar
  35. Lu Y, Yang L, Worrell GA, He B (2012) Seizure source imaging by means of fine spatio-temporal dipole localization and directed transfer function in partial epilepsy patients. Clin Neurophysiol 123(7):1275–1283CrossRefPubMedGoogle Scholar
  36. Makeig S, Bell AJ, Jung TP, Sejnowski TJ et al (1996) Independent component analysis of electroencephalographic data. Adv Neural Inform Process Syst 8:145–151Google Scholar
  37. Mégevand P, Spinelli L, Genetti M, Brodbeck V, Momjian S, Schaller K, Michel CM, Vulliémoz S, Seeck M (2014) Electric source imaging of interictal activity accurately localises the seizure onset zone. J Neurol Neurosurg Psychiatry 85(1):38–43CrossRefPubMedGoogle Scholar
  38. Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. Neuroimage 61(2):371–385CrossRefPubMedGoogle Scholar
  39. Montes-Restrepo V, van Mierlo P, Strobbe G, Staelens S, Vandenberghe S, Hallez H (2014) Influence of skull modeling approaches on EEG source localization. Brain Topogr 27(1):95–111CrossRefPubMedGoogle Scholar
  40. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from eeg data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307CrossRefPubMedGoogle Scholar
  41. Pascual-Marqui RD, Michel CM, Lehmann D (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18(1):49–65CrossRefPubMedGoogle Scholar
  42. Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49(2):201–218CrossRefPubMedGoogle Scholar
  43. Rémi J, Vollmar C, de Marinis A, Heinlin J, Peraud A, Noachtar S (2011) Congruence and discrepancy of interictal and ictal EEG with MRI lesions in focal epilepsies. Neurology 77(14):1383–1390CrossRefPubMedGoogle Scholar
  44. Richardson MP (2012) Large scale brain models of epilepsy: dynamics meets connectomics. J Neurol Neurosurg Psychiatry 83(12):1238–1248CrossRefPubMedGoogle Scholar
  45. Rosenow F, Lüders H (2001) Presurgical evaluation of epilepsy. Brain 124(9):1683–1700CrossRefPubMedGoogle Scholar
  46. Schlögl A, Roberts S, Pfurtscheller G (2000) A criterion for adaptive autoregressive models. Proc Ann Int IEEE EMBS 1581–1582Google Scholar
  47. Schoffelen JM, Gross J (2009) Source connectivity analysis with meg and eeg. Hum Brain Map 30(6):1857–1865CrossRefGoogle Scholar
  48. Smith S (2005) EEG in the diagnosis, classification, and management of patients with epilepsy. J Neurol Neurosurg Psychiatry 76(Suppl 2):ii2–ii7PubMedPubMedCentralGoogle Scholar
  49. Song J, Tucker DM, Gilbert T, Hou J, Mattson C, Luu P, Holmes MD (2013) Methods for examining electrophysiological coherence in epileptic networks. Front Neurol 4:55CrossRefPubMedPubMedCentralGoogle Scholar
  50. Spencer SS (2002) Neural networks in human epilepsy: evidence of and implications for treatment. Epilepsia 43(3):219–227CrossRefPubMedGoogle Scholar
  51. Sprengers M, Vonck K, Carrette E, Marson AG, Boon P (2014) Deep brain and cortical stimulation for epilepsy. Cochrane Database Syst Rev 6:CD008497Google Scholar
  52. Strobbe G, Carrette E, López JD, Van Roost D, Meurs A, Vonck K, Boon P, Vandenberghe S, van Mierlo P (2016) Electrical source imaging of interictal spikes using multiple sparse volumetric priors for presurgical epileptogenic focus localization. Neuroimage Clin 11:252–263CrossRefPubMedPubMedCentralGoogle Scholar
  53. Strobbe G, van Mierlo P, De Vos M, Mijović B, Hallez H, Van Huffel S, López JD, Vandenberghe S (2014) Multiple sparse volumetric priors for distributed EEG source reconstruction. Neuroimage 100:715–724CrossRefPubMedGoogle Scholar
  54. Téllez-Zenteno JF, Dhar R, Wiebe S (2005) Long-term seizure outcomes following epilepsy surgery: a systematic review and meta-analysis. Brain 128(5):1188–1198CrossRefPubMedGoogle Scholar
  55. Van Hoey G, Vanrumste B, D’Havé M, Van de Walle R, Lemahieu I, Boon P (2000) Influence of measurement noise and electrode mislocalisation on EEG dipole-source localisation. Med Biol Eng Comput 38(3):287–296CrossRefPubMedGoogle Scholar
  56. van Mierlo P, Carrette E, Hallez H, Raedt R, Meurs A, Vandenberghe S, Roost D, Boon P, Staelens S, Vonck K (2013) Ictal-onset localization through connectivity analysis of intracranial EEG signals in patients with refractory epilepsy. Epilepsia 54(8):1409–1418CrossRefPubMedGoogle Scholar
  57. van Mierlo P, Carrette E, Hallez H, Vonck K, Van Roost D, Boon P, Staelens S (2011) Accurate epileptogenic focus localization through time-variant functional connectivity analysis of intracranial electroencephalographic signals. Neuroimage 56(3):1122–1133CrossRefPubMedGoogle Scholar
  58. Vorwerk J, Cho JH, Rampp S, Hamer H, Knösche TR, Wolters CH (2014) A guideline for head volume conductor modeling in EEG and MEG. Neuroimage 100:590–607CrossRefPubMedGoogle Scholar
  59. Wang Y, Gotman J (2001) The influence of electrode location errors on EEG dipole source localization with a realistic head model. Clin Neurophysiol 112(9):1777–1780CrossRefPubMedGoogle Scholar
  60. Wennberg R, Cheyne D (2014) EEG source imaging of anterior temporal lobe spikes: validity and reliability. Clin Neurophysiol 125(5):886–902CrossRefPubMedGoogle Scholar
  61. Wennberg R, Valiante T, Cheyne D (2011) EEG and MEG in mesial temporal lobe epilepsy: where do the spikes really come from? Clin Neurophysiol 122(7):1295–1313CrossRefPubMedGoogle Scholar
  62. Xu XL, Xu B, He B (2004) An alternative subspace approach to EEG dipole source localization. Phys Med Biol 49(2):327CrossRefPubMedGoogle Scholar
  63. Yang L, Wilke C, Brinkmann B, Worrell GA, He B (2011) Dynamic imaging of ictal oscillations using non-invasive high-resolution eeg. Neuroimage 56(4):1908–1917CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Willeke Staljanssens
    • 1
    • 2
    Email author
  • Gregor Strobbe
    • 1
    • 2
  • Roel Van Holen
    • 1
    • 2
  • Gwénaël Birot
    • 3
  • Markus Gschwind
    • 3
    • 4
  • Margitta Seeck
    • 4
  • Stefaan Vandenberghe
    • 1
    • 2
  • Serge Vulliémoz
    • 3
    • 4
  • Pieter van Mierlo
    • 1
    • 2
    • 3
  1. 1.MEDISIP, Department of Electronics and Information SystemsGhent UniversityGhentBelgium
  2. 2.iMinds Medical ITGhentBelgium
  3. 3.Functional Brain Mapping Laboratory, Department of Fundamental NeurosciencesUniversity of GenevaGenevaSwitzerland
  4. 4.EEG and Epilepsy Unit, Neurology DepartmentUniversity Hospitals and Faculty of Medicine of GenevaGenevaSwitzerland

Personalised recommendations