Advertisement

Brain Topography

, Volume 30, Issue 2, pp 172–181 | Cite as

The Importance of Properly Compensating for Head Movements During MEG Acquisition Across Different Age Groups

  • Eric Larson
  • Samu TauluEmail author
Original Paper

Abstract

Unlike EEG sensors, which are attached to the head, MEG sensors are located outside the head surface on a fixed external device. Subject head movements during acquisition thus distort the magnetic field distributions measured by the sensors. Previous studies have looked at the effect of head movements, but no study has comprehensively looked at the effect of head movements across age groups, particularly in infants. Using MEG recordings from subjects ranging in age from 3 months through adults, here we first quantify the variability in head position as a function of age group. We then combine these measured head movements with brain activity simulations to determine how head movements bias source localization from sensor magnetic fields measured during movement. We find that large amounts of head movement, especially common in infant age groups, can result in large localization errors. We then show that proper application of head movement compensation techniques can restore localization accuracy to pre-movement levels. We also find that proper noise covariance estimation (e.g., during the baseline period) is important to minimize localization bias following head movement compensation. Our findings suggest that head position measurement during acquisition and compensation during analysis is recommended for researchers working with subject populations or age groups that could have substantial head movements. This is especially important in infant MEG studies.

Keywords

Magnetoencephalography Head movement Movement compensation Signal space separation Artifact correction Brain development 

Notes

Acknowledgments

Funding for this work was provided in part by a grant from the Washington State Life Sciences Discovery Fund (LSDF).

References

  1. Ahlfors S, Ilmoniemi R (1989) Magnetometer position indicator for multichannel MEG. In: Williamson SJ, Hoke M, Stroink G, Kotani M (eds) Advances in biomagnetism. Springer, Berlin, pp 693–696CrossRefGoogle Scholar
  2. Bosseler A, Taulu S, Pihko E, Mäkelä J, Imada T, Ahonen A, Kuhl P (2013) Theta brain rhythms index perceptual narrowing in infant speech perception. Audit Cogn Neurosci 4:690. doi: 10.3389/fpsyg.2013.00690 Google Scholar
  3. Chen Y, Medioni G (1991) Object modeling by registration of multiple range images. In: 1991 IEEE international conference on robotics and automation, 1991. Proceedings, vol 3., pp 2724–9. doi: 10.1109/ROBOT.1991.132043
  4. Cheour M, Imada T, Taulu S, Ahonen A, Salonen J, Kuhl P (2004) Magnetoencephalography is feasible for infant assessment of auditory discrimination. Exp Neurol Neuroimaging Funct Dev Fetuses Newborns 190(Suppl 1):44–51. doi: 10.1016/j.expneurol.2004.06.030 Google Scholar
  5. de Munck JC, Verbunt JPA, Van’t Ent D, Van Dijk BW (2001) The use of an MEG device as 3D digitizer and motion monitoring system. Phys Med Biol 46(8):2041. doi: 10.1088/0031-9155/46/8/301 CrossRefPubMedGoogle Scholar
  6. Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C, Goj R et al (2013) MEG and EEG data analysis with MNE-python. Front Brain Imaging Methods 7:267. doi: 10.3389/fnins.2013.00267 Google Scholar
  7. Gramfort A, Luessi M, Larson E, Engemann D, Strohmeier D, Brodbeck C, Parkkonen L, Hämäläinen M (2014) MNE software for processing MEG and EEG data. NeuroImage 86:446–460. doi: 10.1016/j.neuroimage.2013.10.027 CrossRefPubMedGoogle Scholar
  8. Hämäläinen M, Hari R, Ilmoniemi R, Knuutila J, Lounasmaa O (1993) Magnetoencephalography—theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497CrossRefGoogle Scholar
  9. Imada T, Zhang Y, Cheour M, Taulu S, Ahonen A, Kuhl P (2006) Infant speech perception activates Broca’s area: a developmental magnetoencephalography study. NeuroReport 17(10):957–962. doi: 10.1097/01.wnr.0000223387.51704.89 CrossRefPubMedGoogle Scholar
  10. Johnson C, Schwindt P, Weisend M (2013) Multi-sensor magnetoencephalography with atomic magnetometers. Phys Med Biol 58:6065–6077. doi: 10.1088/0031-9155/58/17/6065 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Knappe S, Tilmann S, Trahms L (2014) Optically-pumped magnetometers for MEG. In: Supek S, Aine CJ (eds) Magnetoencephalography. Springer, Berlin, pp 993–999Google Scholar
  12. Knösche T (2002) Transformation of whole-head MEG recordings between different sensor positions. Biomed Tech (Berl) 47(3):59–62CrossRefGoogle Scholar
  13. Kuhl P, Ramírez R, Bosseler A, Lin J-F, Imada T (2014) Infants’ brain responses to speech suggest analysis by synthesis. Proc Natl Acad Sci 111(31):11238–11245. doi: 10.1073/pnas.1410963111 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Lew S, Sliva D, Choe M, Grant E, Okada Y, Wolters C, Hämäläinen M (2013) Effects of sutures and fontanels on MEG and EEG source analysis in a realistic infant head model. NeuroImage 76:282–293. doi: 10.1016/j.neuroimage.2013.03.017 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Medvedovsky M, Taulu S, Bikmullina R, Paetau R (2007) Artifact and head movement compensation in MEG. Neurol Neurophysiol Neurosci 4:1–10Google Scholar
  16. Nenonen J, Nurminen J, Kičić D, Bikmullina R, Lioumis P, Jousmäki V, Taulu S, Parkkonen L, Putaala M, Kähkönen S (2012) Validation of head movement correction and spatiotemporal signal space separation in magnetoencephalography. Clin Neurophysiol 123(11):2180–2191. doi: 10.1016/j.clinph.2012.03.080 CrossRefPubMedGoogle Scholar
  17. Okada Y, Pratt K, Atwood C, Mascarenas A, Reineman R, Nurminen J, Paulson D (2006) BabySQUID: a mobile, high-resolution multichannel magnetoencephalography system for neonatal brain assessment. Rev Sci Instrum 77(2):024301. doi: 10.1063/1.2168672 CrossRefGoogle Scholar
  18. Roberts T, Paulson D, Hirschkoff E, Pratt K, Mascarenas A, Miller P, Han M et al (2014) Artemis 123: development of a whole-head infant and young child MEG system. Front Hum Neurosci. doi: 10.3389/fnhum.2014.00099 Google Scholar
  19. Singh K, Holliday I, Furlong P, Harding G (1997) Evaluation of MRI-MEG/EEG co-registration strategies using Monte Carlo simulation. Electroencephalogr Clin Neurophysiol 102(2):81–85. doi: 10.1016/S0921-884X(96)96570-4 CrossRefPubMedGoogle Scholar
  20. Stolk A, Todorovic A, Schoffelen J-M, Oostenveld R (2013) Online and offline tools for head movement compensation in MEG. NeuroImage 68:39–48. doi: 10.1016/j.neuroimage.2012.11.047 CrossRefPubMedGoogle Scholar
  21. Taulu S, Kajola M (2005) Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys 97(12):124905–5–10. doi: 10.1063/1.1935742
  22. Taulu S, Simola J, Kajola M (2005) Applications of the signal space separation method. IEEE Trans Signal Process 53(9):3359CrossRefGoogle Scholar
  23. Troebinger L, López J, Lutti A, Bradbury D, Bestmann S, Barnes G (2014) High precision anatomy for MEG. Neuroimage 86(100):583–591. doi: 10.1016/j.neuroimage.2013.07.065 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Uutela K, Taulu S, Hämäläinen M (2001) Detecting and correcting for head movements in neuromagnetic measurements. Neuroimage 14(6):1424–1431. doi: 10.1006/nimg.2001.0915 CrossRefPubMedGoogle Scholar
  25. Vema Krishna Murthy S, MacLellan M, Beyea S, Bardouille T (2014) Faster and improved 3-D head digitization in MEG using kinect. Brain Imaging Methods 8:326. doi: 10.3389/fnins.2014.00326 Google Scholar
  26. Wehner D, Hämäläinen M, Mody M, Ahlfors S (2008) Head movements of children in MEG: quantification, effects on source estimation, and compensation. NeuroImage 40(2):541–550. doi: 10.1016/j.neuroimage.2007.12.026 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Wilson H (2004) Continuous head-localization and data correction in a whole-cortex MEG sensor. Neurol Clin Neurophysiol 2004:56PubMedGoogle Scholar
  28. World Health Organization (2016) Head circumference-for-age (BOYS). http://www.who.int/childgrowth/standards/second_set/cht_hcfa_boys_p_0_5.pdf?ua=1

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Institute for Learning & Brain SciencesUniversity of WashingtonSeattleUSA
  2. 2.Department of PhysicsUniversity of WashingtonSeattleUSA

Personalised recommendations