Brain Topography

, Volume 30, Issue 1, pp 122–135 | Cite as

Causal Dynamics of Scalp Electroencephalography Oscillation During the Rubber Hand Illusion

  • Noriaki KanayamaEmail author
  • Alberto Morandi
  • Kazuo Hiraki
  • Francesco Pavani
Original Paper


Rubber hand illusion (RHI) is an important phenomenon for the investigation of body ownership and self/other distinction. The illusion is promoted by the spatial and temporal contingencies of visual inputs near a fake hand and physical touches to the real hand. The neural basis of this phenomenon is not fully understood. We hypothesized that the RHI is associated with a fronto-parietal circuit, and the goal of this study was to determine the dynamics of neural oscillation associated with this phenomenon. We measured electroencephalography while delivering spatially congruent/incongruent visuo-tactile stimulations to fake and real hands. We applied time–frequency analyses and calculated renormalized partial directed coherence (rPDC) to examine cortical dynamics during the bodily illusion. When visuo-tactile stimulation was spatially congruent, and the fake and real hands were aligned, we observed a reduced causal relationship from the medial frontal to the parietal regions with respect to baseline, around 200 ms post-stimulus. This change in rPDC was negatively correlated with a subjective report of the RHI intensity. Moreover, we observed a link between the proprioceptive drift and an increased causal relationship from the parietal cortex to the right somatosensory cortex during a relatively late period (550–750 ms post-stimulus). These findings suggest a two-stage process in which (1) reduced influence from the medial frontal regions over the parietal areas unlocks the mechanisms that preserve body integrity, allowing RHI to emerge; and (2) information processed at the parietal cortex is back-projected to the somatosensory cortex contralateral to the real hand, inducing proprioceptive drift.


Rubber hand illusion Electroencephalography Causal relationship Body ownership 



This study was supported by the program of Research Fellowships for Young Scientists Grant numbers 26780418 and 16H05958 (Japan Society for the Promotion of Science [JSPS], Japan) and by the Institutional Program for Young Researcher Overseas Visits (The University of Tokyo). In addition, the Center of Innovation Program from the Japan Science and Technology Agency (JST) partially supported this research. Finally, we are grateful to the two anonymous reviewers whose detailed and stimulating suggestions greatly improved the previous version of this article.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval for Research Involving Humans

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional research committee (approval 2014-028) and with the 1964 Helsinki declaration and its later amendments.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. Apps MA, Tsakiris M (2014) The free-energy self: a predictive coding account of self-recognition. Neurosci Biobehav Rev 41:85–97. doi: 10.1016/j.neubiorev.2013.01.029 CrossRefPubMedGoogle Scholar
  2. Asai T (2015) Illusory body-ownership entails automatic compensative movement: for the unified representation between body and action. Exp Brain Res 233:777–785. doi: 10.1007/s00221-014-4153-0 CrossRefPubMedGoogle Scholar
  3. Asai T, Mao Z, Sugimor E, Tanno Y (2011) Rubber hand illusion, empathy, and schizotypal experiences in terms of self-other representations. Conscious Cogn 20:1744–1750. doi: 10.1016/j.concog.2011.02.005 CrossRefPubMedGoogle Scholar
  4. Baker M (2016) 1500 scientists lift the lid on reproducibility. Nature 533(7604):452–454CrossRefPubMedGoogle Scholar
  5. Berlucchi G, Aglioti SM (2010) The body in the brain revisited. Exp Brain Res 200:25–35. doi: 10.1007/s00221-009-1970-7 CrossRefPubMedGoogle Scholar
  6. Blanke O, Metzinger T (2009) Full-body illusions and minimal phenomenal selfhood. Trends Cogn Sci 13:7–13. doi: 10.1016/j.tics.2008.10.003 CrossRefPubMedGoogle Scholar
  7. Blanke O, Mohr C (2005) Out-of-body experience, heautoscopy, and autoscopic hallucination of neurological origin Implications for neurocognitive mechanisms of corporeal awareness and self-consciousness. Brain Res Rev 50:184–199CrossRefPubMedGoogle Scholar
  8. Botvinick M, Cohen J (1998) Rubber hands ‘feel’ touch that eyes see. Nature 391:756CrossRefPubMedGoogle Scholar
  9. Botvinick M, Nystrom LE, Fissell K, Carter CS, Cohen JD (1999) Conflict monitoring versus selection-for-action in anterior cingulate cortex. Nature 402:179–181CrossRefPubMedGoogle Scholar
  10. Botvinick M, Cohen JD, Carter CS (2004) Conflict monitoring and anterior cingulate cortex: an update. Trends Cogn Sci 8:539–546CrossRefPubMedGoogle Scholar
  11. Brozzoli C, Gentile G, Ehrsson HH (2012) That’s near my hand! parietal and premotor coding of hand-centered space contributes to localization and self-attribution of the hand. J Neurosci 32(42):14573–14582CrossRefPubMedGoogle Scholar
  12. Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT Press, MassachusettsGoogle Scholar
  13. Cohen JD, Botvinick M, Carter CS (2000) Anterior cingulate and prefrontal cortex: who’s in control? Nat Neurosci 3:421–423CrossRefPubMedGoogle Scholar
  14. Corbetta M, Shulman GL (2002) Control of goal-directed and stimulus-driven attention in the brain. Nat Rev Neurosci 3:201–215CrossRefPubMedGoogle Scholar
  15. De Vignemont F (2007) Habeas corpus: the sense of ownership of one’s own body. Mind Lang 22:427–449. doi: 10.1111/j.1468-0017.2007.00315.x CrossRefGoogle Scholar
  16. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21CrossRefPubMedGoogle Scholar
  17. Delorme A, Mullen T, Kothe C, Akalin Acar Z, Bigdely-Shamlo N, Vankov A, Makeig S (2011) EEGLAB, SIFT, NFT, BCILAB, and ERICA: new tools for advanced EEG processing. Comput Intell Neurosci 2011:130714. doi: 10.1155/2011/130714 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Ehrsson HH, Spence C, Passingham RE (2004) That’s my hand! activity in premotor cortex reflects feeling of ownership of a limb. Science 305:875–877CrossRefPubMedGoogle Scholar
  19. Ehrsson HH, Holmes NP, Passingham RE (2005) Touching a rubber hand: feeling of body ownership is associated with activity in multisensory brain areas. J Neurosci 25:10564–10573. doi: 10.1523/JNEUROSCI.0800-05.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ehrsson HH, Wiech K, Weiskopf N, Dolan RJ, Passingham RE (2007) Threatening a rubber hand that you feel is yours elicits a cortical anxiety response. Proc Natl Acad Sci USA 104:9828–9833CrossRefPubMedPubMedCentralGoogle Scholar
  21. Evans N, Blanke O (2013) Shared electrophysiology mechanisms of body ownership and motor imagery. Neuroimage 64:216–228. doi: 10.1016/j.neuroimage.2012.09.027 CrossRefPubMedGoogle Scholar
  22. Gao Q, Duan X, Chen H (2011) Evaluation of effective connectivity of motor areas during motor imagery and execution using conditional Granger causality. Neuroimage 54:1280–1288. doi: 10.1016/j.neuroimage.2010.08.071 CrossRefPubMedGoogle Scholar
  23. Gentile G, Guterstam A, Brozzoli C, Ehrsson HH (2013) Disintegration of multisensory signals from the real hand reduces default limb self-attribution: an fMRI study. J Neurosci 33:13350–13366CrossRefPubMedPubMedCentralGoogle Scholar
  24. Gow DW Jr, Segawa JA, Ahlfors SP, Lin FH (2008) Lexical influences on speech perception: a Granger causality analysis of MEG and EEG source estimates. Neuroimage 43:614–623. doi: 10.1016/j.neuroimage.2008.07.027 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Gramann K, Gwin JT, Bigdely-Shamlo N, Ferris DP, Makeig S (2010) Visual evoked responses during standing and walking. Front Hum Neurosci 4:202. doi: 10.3389/fnhum.2010.00202 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Groppe DM, Urbach TP, Kutas M (2011) Mass univariate analysis of event-related brain potentials/fields I: a critical tutorial review. Psychophysiology 48:1711–1725. doi: 10.1111/j.1469-8986.2011.01273.x CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guterstam A, Gentil G, Ehrsson HH (2013) The invisible hand illusion: multisensory integration leads to the embodiment of a discrete volume of empty space. J Cogn Neurosci 25:1078–1099. doi: 10.1162/jocn CrossRefPubMedGoogle Scholar
  28. Hesse W, Möller E, Arnold M, Schack B (2003) The use of time-variant EEG Granger causality for inspecting directed interdependencies of neural assemblies. J Neurosci Methods 124:27–44CrossRefPubMedGoogle Scholar
  29. Kalckert A, Ehrsson HH (2014) The moving rubber hand illusion revisited: comparing movements and visuotactile stimulation to induce illusory ownership. Conscious Cogn 26:117–132. doi: 10.1016/j.concog.2014.02.003 CrossRefPubMedGoogle Scholar
  30. Kammers MP, Verhagen L, Dijkerman HC, Hogendoorn H, De Vignemont F, Schutter DJ (2009) Is this hand for real? attenuation of the rubber hand illusion by transcranial magnetic stimulation over the inferior parietal lobule. J Cogn Neurosci 21:1311–1320. doi: 10.1162/jocn.2009.21095 CrossRefPubMedGoogle Scholar
  31. Kanayama N, Ohira H (2009) Multisensory processing and neural oscillatory responses: separation of visuotactile congruency effect and corresponding electroencephalogram activities. NeuroReport 20:289–293. doi: 10.1097/WNR.0b013e328322ca63 CrossRefPubMedGoogle Scholar
  32. Kanayama N, Sato A, Ohira H (2007) Crossmodal effect with rubber hand illusion and gamma-band activity. Psychophysiology 44:392–402CrossRefPubMedGoogle Scholar
  33. Kanayama N, Tamè L, Ohira H, Pavani F (2012) Top down influence on visuo-tactile interaction modulates neural oscillatory responses. Neuroimage 59:3406–3417. doi: 10.1016/j.neuroimage.2011.11.076 CrossRefPubMedGoogle Scholar
  34. Keil A, Sabatinelli D, Ding M, Lang PJ, Ihssen N, Heim S (2009) Re-entrant projections modulate visual cortex in affective perception: evidence from granger causality analysis. Hum Brain Mapp 30:532–540CrossRefPubMedPubMedCentralGoogle Scholar
  35. Keil J, Weisz N, Paul-Jordanov I, Wienbruch C (2010) Localization of the magnetic equivalent of the ERN and induced oscillatory brain activity. Neuroimage 51:404–411. doi: 10.1016/j.neuroimage.2010.02.003 CrossRefPubMedGoogle Scholar
  36. Lenggenhager B, Halje P, Blanke O (2011) Alpha band oscillations correlate with illusory self-location induced by virtual reality. Eur J Neurosci 33:1935–1943. doi: 10.1111/j.1460-9568.2011.07647.x CrossRefPubMedGoogle Scholar
  37. Lunn V (1970) Autoscopic phenomena. Acta Psychiatr Scand 46(Supplement s219):118–125CrossRefGoogle Scholar
  38. Lütkepohl H (2006) Chapter 6. forecasting with VARMA models. In: Elliott G, Granger CWJ, Timmermann A (eds) Handbook of economic forecasting, vol 1. Elsevier, Amsterdam, pp 287–325. doi: 10.1016/S1574-0706(05)01006-2 Google Scholar
  39. Luu P, Tucker DM, Makeig S (2004) Frontal midline theta and the error-related negativity: neurophysiological mechanisms of action regulation. Clin Neurophysiol 115:1821–1835CrossRefPubMedGoogle Scholar
  40. Makeig S, Delorme A, Westerfield M, Jung T-P, Townsend J, Courchesne E, Sejnowski TJ (2004) Electroencephalographic brain dynamics following manually responded visual targets. PLoS Biol 2:e176. doi: 10.1371/journal.pbio.0020176 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Makin TR, Holmes NP, Ehrsson HH (2008) On the other hand: dummy hands and peripersonal space. Behav Brain Res 191:1–10. doi: 10.1016/j.bbr.2008.02.041 CrossRefPubMedGoogle Scholar
  42. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS Jr, Pandya DN (2005) Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex 15:854–869CrossRefPubMedGoogle Scholar
  43. Miyakoshi M, Kanayama N, Iidaka T, Ohira H (2010) EEG evidence of face-specific visual self-representation. NeuroImage 50:1666–1675. doi: 10.1016/j.neuroimage.2010.01.030 CrossRefPubMedGoogle Scholar
  44. Mullen T, Delorme A, Kothe C, Makeig S (2010) An Electrophysiological Information Flow Toolbox for EEGLAB. Society for Neuroscience Conference, San Diego
  45. Oostenveld R, Fries P, Maris E, Schoffelen JM (2011) FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput Intell Neurosci 2011:156869. doi: 10.1155/2011/156869 CrossRefPubMedGoogle Scholar
  46. Open Science Collaboration (2015) Estimating the reproducibility of psychological science. Science 349:4716. doi: 10.1126/science.aac4716 CrossRefGoogle Scholar
  47. Pastötter B, Hanslmayr S, Bäuml KH (2010) Conflict processing in the anterior cingulate cortex constrains response priming. Neuroimage 50:1599–1605. doi: 10.1016/j.neuroimage.2010.01.095 CrossRefPubMedGoogle Scholar
  48. Pavani F, Spence C, Driver J (2000) Visual capture of touch: out-of-the-body experiences with rubber gloves. Psychol Sci 11:353–359CrossRefPubMedGoogle Scholar
  49. Quinn BT, Carlson C, Doyle W, Cash SS, Devinsky O, Spence C, Halgren E, Thesen T (2014) Intracranial cortical responses during visual-tactile integration in humans. J Neurosci 34:171–181. doi: 10.1523/JNEUROSCI.0532-13.2014 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sabatinelli D, Frank DW, Wanger TJ, Dhamala M, Adhikari BM, Li X (2014) The timing and directional connectivity of human frontoparietal and ventral visual attention networks in emotional scene perception. Neuroscience 277:229–238. doi: 10.1016/j.neuroscience.2014.07.005 CrossRefPubMedGoogle Scholar
  51. Schelter B, Timmer J, Eichler M (2009) Assessing the strength of directed influences among neural signals using renormalized partial directed coherence. J Neurosci Methods 179:121–130. doi: 10.1016/j.jneumeth.2009.01.006 CrossRefPubMedGoogle Scholar
  52. Serino A, Sforza AL, Kanayama N, van Elk M, Kaliuzhna M, Herbelin B, Blanke O (2015) Tuning of temporo-occipital activity by frontal oscillations during virtual mirror exposure causes erroneous self-recognition. Eur J Neurosci 42:2515–2526CrossRefPubMedGoogle Scholar
  53. Thiebaut de Schotten M, Dell’Acqua F, Forkel SJ, Simmons A, Vergani F, Murphy DG, Catani M (2011) A lateralized brain network for visuospatial attention. Nat Neurosci 14:1245–1246. doi: 10.1038/nn.2905 CrossRefPubMedGoogle Scholar
  54. Trujillo LT, Allen JJ (2007) Theta EEG dynamics of the error-related negativity. Clin Neurophysiol 118:645–668. doi: 10.1016/j.clinph.2006.11.009 CrossRefPubMedGoogle Scholar
  55. Tsakiris M (2010) My body in the brain: a neurocognitive model of body-ownership. Neuropsychologia 48:703–712. doi: 10.1016/j.neuropsychologia.2009.09.034 CrossRefPubMedGoogle Scholar
  56. Tsakiris M, Haggard P (2005) The rubber hand illusion revisited: visuotactile integration and self-attribution. J Exp Psychol Hum Percept Perform 31:80–91CrossRefPubMedGoogle Scholar
  57. Tsakiris M, Hesse MD, Boy C, Haggard P, Fink GR (2007) Neural signatures of body ownership: a sensory network for bodily self-consciousness. Cereb Cortex 17:2235–2244CrossRefPubMedGoogle Scholar
  58. Tsakiris M, Longo MR, Haggard P (2010) Having a body versus moving your body: neural signatures of agency and body-ownership. Neuropsychologia 48:2740–2749. doi: 10.1016/j.neuropsychologia.2010.05.021 CrossRefPubMedGoogle Scholar
  59. Vallar G, Ronchi R (2006) Anosognosia for motor and sensory deficits after unilateral brain damage: a review. Restor Neurol Neurosci 24:247–257PubMedGoogle Scholar
  60. Van Steenbergen H, Band GP, Hommel B (2012) Reward valence modulates conflict-driven attentional adaptation: electrophysiological evidence. Biol Psychol 90:234–241. doi: 10.1016/j.biopsycho.2012.03.018 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Noriaki Kanayama
    • 1
    Email author
  • Alberto Morandi
    • 2
  • Kazuo Hiraki
    • 3
  • Francesco Pavani
    • 2
    • 4
  1. 1.Institute of Biomedical and Health SciencesHiroshima UniversityHiroshimaJapan
  2. 2.Department of Psychology and Cognitive ScienceUniversity of TrentoRoveretoItaly
  3. 3.Department of General Systems Studies in Graduate School of Arts and SciencesUniversity of TokyoTokyoJapan
  4. 4.Centre for Mind/Brain SciencesUniversity of TrentoRoveretoItaly

Personalised recommendations