Brain Topography

, Volume 29, Issue 4, pp 506–514 | Cite as

On the Differentiation of Foveal and Peripheral Early Visual Evoked Potentials

  • Bruce C. Hansen
  • Andrew M. Haun
  • Aaron P. Johnson
  • Dave Ellemberg
Short Communication

Abstract

The C1 is one of the earliest visual evoked potentials observed following the onset of a patterned stimulus. The polarity of its peak is dependent on whether stimuli are presented in the upper or lower regions of the peripheral visual field, but has been argued to be negative for stimuli presented to the fovea. However, there has yet to be a systematic investigation into the extent to which the peripheral C1 (pC1) and foveal C1 (fC1) can be differentiated on the basis of response characteristics to different stimuli. The current study employed checkerboard patterns (Exp 1) and sinusoidal gratings of different spatial frequency (Exp 2) presented to the fovea or within one of the four quadrants of the peripheral visual field. The checkerboard stimuli yielded a sizable difference in peak component latency, with the fC1 peaking ~32 ms after the pC1. Further, the pC1 showed a band-pass response magnitude profile that peaked at 4 cycles per degree (cpd), whereas the fC1 was high-pass for spatial frequency, with a cut-off around 4 cpd. Finally, the scalp topographies of the pC1 and fC1 in both experiments differed greatly, with the fC1 being more posterior than the pC1. The results reported here call into question recent attempts to characterize general C1 processes without regard to whether stimuli are placed in the fovea or in the periphery.

Keywords

Visual evoked potentials (VEP) C1 Foveal vision Peripheral vision Spatial frequency 

References

  1. Ales JM, Yates JL, Norcia AM (2010) V1 is not uniquely identified by polarity reversals of responses to upper and lower visual field stimuli. Neuroimage 52:1401–1409CrossRefPubMedPubMedCentralGoogle Scholar
  2. Ales J, Yates JL, Norcia AM et al (2013) On determining the intracranial sources of visual evoked potentials from scalp topography: a reply to Kelly et al. (this issue). Neuroimage 64:703–711CrossRefPubMedGoogle Scholar
  3. Brady N, Field DJ (1995) What’s constant in contrast constancy? The effects of scaling on the perceived contrast of bandpass patterns. Vis Res 35:739–756CrossRefPubMedGoogle Scholar
  4. Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: Cartool. Comput Intell Neurosci 2011:1–15CrossRefGoogle Scholar
  5. Clark VP, Fan S, Hillyard SA (1995) Identification of early visual evoked potential generators by retinotopic and topographic analysis. Hum Brain Mapp 2:170–187CrossRefGoogle Scholar
  6. De Cesarei A, Mastria S, Codispoti M (2013) Early spatial frequency processing of natural images: an ERP study. PLoS One 8:e65103CrossRefPubMedPubMedCentralGoogle Scholar
  7. De Valois R, Albrecht D, Thorell L (1982) Spatial frequency selectivity of cells in macaque visual cortex. Vis Res 22:545–559CrossRefPubMedGoogle Scholar
  8. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134(1):9–21CrossRefPubMedGoogle Scholar
  9. Di Russo F, Martinez A, Sereno MI, Pitzalis S, Hillyard SA (2001) Cortical sources of the early components of the visual evoked potential. Hum Brain Mapp 15(2):95–111CrossRefGoogle Scholar
  10. Ellemberg D, Hammarrenger B, Lepore F, Roy MS, Guillemot JP (2001) Contrast dependency of VEPs as a function of spatial frequency: the parvocellular and magnocellular contributions to human VEPs. Spat Vis 15(1):99–111CrossRefPubMedGoogle Scholar
  11. Foster KH, Gaska JP, Nagler M, Pollen DA (1985) Spatial and temporal frequency selectivity of neurones in visual cortical areas V1 and V2 of the macaque monkey. J Physiol 365:331–363CrossRefPubMedPubMedCentralGoogle Scholar
  12. Foxe JJ, Strugstad EC, Sehatpour P, Molholm S, Pasieka W, Schroeder CE, McCourt ME (2008) Parvocellular and magnocellular contributions to the initial generators of the visual evoked potential: high-density electrical mapping of the “C1” component. Brain Topogr 21(1):11–21CrossRefPubMedGoogle Scholar
  13. Georgeson MA, Sullivan GD (1975) Contrast constancy: deblurring in human vision by spatial frequency channels. J Physiol 252:627–656CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hansen BC, Jacques T, Johnson AP, Ellemberg D (2011) From spatial frequency contrast to edge preponderance: the differential modulation of early visual evoked potentials by natural scene stimuli. Vis Neurosci 28(3):221–237CrossRefPubMedGoogle Scholar
  15. Hansen BC, Johnson AP, Ellemberg D (2012) Different spatial frequency bands selectively signal for natural image statistics in the early visual system. J Neurophysiol 108:2160–2172CrossRefPubMedGoogle Scholar
  16. James AC (2003) The pattern-pulse multifocal visual evoked potential. Invest Ophthalmol Vis Sci 44(2):879–890CrossRefPubMedGoogle Scholar
  17. Jeffreys DA, Axford JG (1972a) Source locations of pattern-specific components of human visual evoked potentials. I. Component of striate cortical origin. Exp Brain Res 16:1–21PubMedGoogle Scholar
  18. Jeffreys DA, Axford JG (1972b) Source locations of pattern-specific components of human visual evoked potentials. II. Component of extrastriate cortical origin. Exp Brain Res 16:22–40PubMedGoogle Scholar
  19. Kelly SP, Schroeder CE, Lalor EC et al (2013a) What does polarity inversion of extrastriate activity tell us about striate contributions to the early VEP? A comment on Ales et al. (2010). Neuroimage 76:442–445CrossRefPubMedGoogle Scholar
  20. Kelly SP, Vanegas MI, Schroeder CE, Lalor EC et al (2013b) The cruciform model of striate generation of the early VEP, re-illustrated, not revoked: a reply to Ales et al. (2013). Neuroimage 82:154–159CrossRefPubMedPubMedCentralGoogle Scholar
  21. Lalor EC, Kelly SP, Foxe JJ (2012) Generation of the VESPA response to rapid contrast fluctuations is dominated by striate cortex: evidence from retinotopic mapping. Neuroscience 218:226–234CrossRefPubMedPubMedCentralGoogle Scholar
  22. Miller CE, Shapiro KL, Luck SJ (2015) Electrophysiological measurement of the effect of interstimulus competition on early cortical stages. NeuroImage 105:229–237CrossRefPubMedPubMedCentralGoogle Scholar
  23. Murray IJ, Parry NRA, Carden D (1987) Human visual evoked potentials to chromatic and achromatic gratings. Clin Vis Sci 1:231–244Google Scholar
  24. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264CrossRefPubMedGoogle Scholar
  25. Musselwhite MJ, Jeffreys DA (1982) Pattern-evoked potentials and bloch’s law. Vision Res 22:897–903CrossRefPubMedGoogle Scholar
  26. Musselwhite MJ, Jeffreys DA (1985) The influence of spatial frequency on the reaction times and evoked potentials recorded to grating pattern stimuli. Vis Res 25:1545–1555CrossRefPubMedGoogle Scholar
  27. Parker DM, Salzen EA (1977) Latency changes in the human visual evoked response to sinusoidal gratings. Vis Res 17:1201–1204CrossRefPubMedGoogle Scholar
  28. Parker DM, Salzen EA, Lishman JR (1982) The early wave of the visual evoked potential to sinusoidal gratings: Responses to quadrant stimulation as a function of spatial frequency. Electroencephalogr Clin Neurophysiol 53:427–435CrossRefPubMedGoogle Scholar
  29. Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical linear modeling of electroencephalographic data. Comput Intell Neurosci 2011:831409CrossRefPubMedPubMedCentralGoogle Scholar
  30. Reed JL, Marx MS, May JG (1984) Spatial frequency tuning in the visual evoked potential elicited by sine-wave gratings. Vis Res 9:1057–1062CrossRefGoogle Scholar
  31. Tobimatsu S, Tomoda H, Kato M (1995) Magnocellular and parvocellular contributions to visual evoked potentials in humans: stimulation with chromatic and achromatic gratings and apparent motion. J Neurol Sci 134:73–82CrossRefPubMedGoogle Scholar
  32. Vassilev A, Mihaylova M, Bonnet C (2002) On the delay in processing high spatial frequency visual information: reaction time and VEP latency study of the effect of local intensity of stimulation. Vis Res 42(7):851–864CrossRefPubMedGoogle Scholar
  33. Whittingstall K, Wilson D, Matthias S, Gerhard S (2008) Correspondence of visual evoked potentials with fmri signals in human visual cortex. Brain Topogr 21:86–92CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bruce C. Hansen
    • 1
  • Andrew M. Haun
    • 2
  • Aaron P. Johnson
    • 3
  • Dave Ellemberg
    • 4
  1. 1.Department of Psychology, Neuroscience ProgramColgate UniversityHamiltonUSA
  2. 2.Department of PsychologyUniversity of Wisconsin-MadisonMadisonUSA
  3. 3.Department of PsychologyConcordia UniversityMontrealCanada
  4. 4.Centre de recherche en neuropsychologie et cognition (CERNEC)Université de MontréalMontrealCanada

Personalised recommendations