Brain Topography

, Volume 29, Issue 2, pp 273–282 | Cite as

EEG Correlates of Relative Motion Encoding

  • Evelina Thunell
  • Gijs Plomp
  • Haluk Ögmen
  • Michael H. Herzog
Original Paper


A large portion of the visual cortex is organized retinotopically, but perception is usually non-retinotopic. For example, a reflector on the spoke of a bicycle wheel appears to move on a circular or prolate cycloidal orbit as the bicycle moves forward, while in fact it traces out a curtate cycloidal trajectory. The moving bicycle serves as a non-retinotopic reference system to which the motion of the reflector is anchored. To study the neural correlates of non-retinotopic motion processing, we used the Ternus–Pikler display, where retinotopic processing in a stationary reference system is contrasted against non-retinotopic processing in a moving one. Using high-density EEG, we found similar brain responses for both retinotopic and non-retinotopic rotational apparent motion from the earliest evoked peak (around 120 ms) and throughout the rest of the visual processing, but only minor correlates of the motion of the reference system itself (mainly around 100–120 ms). We suggest that the visual system efficiently discounts the motion of the reference system from early on, allowing a largely reference system independent encoding of the motion of object parts.


Apparent motion Electroencephalography (EEG) Non-retinotopic processing Ternus–Pikler display 



We thank Marc Repnow for technical support. This work was supported by the Swiss National Science Foundation (SNF) Project “Basics of visual processing: from retinotopic encoding to non-retinotopic representations”.

Supplementary material

10548_2015_458_MOESM1_ESM.docx (638 kb)
Supplementary material 1 (DOCX 637 kb) (296 kb)
Supplementary material 2 (MOV 296 kb) (332 kb)
Supplementary material 3 (MOV 332 kb)


  1. Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267–278CrossRefPubMedGoogle Scholar
  2. Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102:2704–2718. doi: 10.1152/jn.00102.2009 PubMedCentralCrossRefPubMedGoogle Scholar
  3. Bach M (1996) The “Freiburg Visual Acuity Test”—automatic measurement of the visual acuity. Optom Vis Sci 73:49–53CrossRefPubMedGoogle Scholar
  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. R Stat Soc Ser B 57:289–300Google Scholar
  5. Boi M, Ögmen H, Krummenacher J et al (2009) A (fascinating) litmus test for human retino- vs. non-retinotopic processing. J Vis 9:1–11. doi: 10.1167/9.13.5 CrossRefPubMedGoogle Scholar
  6. Breitmeyer BG, Ritter A (1986a) The role of visual pattern persistence in bistable stroboscopic motion. Vis Res 26:1801–1806CrossRefPubMedGoogle Scholar
  7. Breitmeyer BG, Ritter A (1986b) Visual persistence and the effect of eccentric viewing, element size, and frame duration on bistable stroboscopic motion percepts. Percept Psychophys 39:275–280CrossRefPubMedGoogle Scholar
  8. Bridgeman B, Van der Heijden AHC, Velichkovsky BM (1994) A theory of visual stability across saccadic eye movements. Behav Brain Sci 17:247–258. doi: 10.1017/S0140525X00034361 CrossRefGoogle Scholar
  9. Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 2011:813870. doi: 10.1155/2011/813870 PubMedCentralCrossRefPubMedGoogle Scholar
  10. de Peralta Grave, Menendez R, Murray MM, Michel CM et al (2004) Electrical neuroimaging based on biophysical constraints. Neuroimage 21:527–539. doi: 10.1016/j.neuroimage.2003.09.051 CrossRefGoogle Scholar
  11. Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178CrossRefPubMedGoogle Scholar
  12. Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92CrossRefPubMedGoogle Scholar
  13. Duncker K (1929) Über induzierte Bewegung. (Eine Betrag zur Theorie optisch wahrgenommener Bewegung.). Psychol Forsch 12:180–259CrossRefGoogle Scholar
  14. Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999. doi: 10.1523/JNEUROSCI.5476-07.2008 PubMedCentralCrossRefPubMedGoogle Scholar
  15. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878. doi: 10.1006/nimg.2001.1037 CrossRefPubMedGoogle Scholar
  16. Goebel R, Khorram-Sefat D, Muckli L et al (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573CrossRefPubMedGoogle Scholar
  17. Johansson G (1950) Configurations in event perception, an experimental study. Almqvist & Wiksells, UppsalaGoogle Scholar
  18. Klimesch W (2011) Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res 1408:52–71. doi: 10.1016/j.brainres.2011.06.003 PubMedCentralCrossRefPubMedGoogle Scholar
  19. Kuba M, Kubová Z, Kremlácek J, Langrová J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res 47:189–202. doi: 10.1016/j.visres.2006.09.020 CrossRefPubMedGoogle Scholar
  20. Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vis Res 35:197–205CrossRefPubMedGoogle Scholar
  21. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621CrossRefPubMedGoogle Scholar
  22. Liu T, Slotnick SD, Yantis S (2004) Human MT+ mediates perceptual filling-in during apparent motion. Neuroimage 21:1772–1780. doi: 10.1016/j.neuroimage.2003.12.025 CrossRefPubMedGoogle Scholar
  23. Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325CrossRefPubMedGoogle Scholar
  24. Muckli L, Kriegeskorte N, Lanfermann H et al (2002) Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and States. J Neurosci 22:RC219PubMedGoogle Scholar
  25. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264. doi: 10.1007/s10548-008-0054-5 CrossRefPubMedGoogle Scholar
  26. Nobre AC, Rao A, Chelazzi L (2006) Selective attention to specific features within objects: behavioral and electrophysiological evidence. J Cogn Neurosci 18:539–561. doi: 10.1162/jocn.2006.18.4.539 CrossRefPubMedGoogle Scholar
  27. Pantle A, Picciano L (1976) A multistable movement display: evidence for two separate motion systems in human vision. Science 193:500–502CrossRefPubMedGoogle Scholar
  28. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. doi: 10.1109/10.391164 CrossRefPubMedGoogle Scholar
  29. Pikler J (1917) Sinnesphysiologische Untersuchungen. Barth, LeipzigGoogle Scholar
  30. Plomp G, Michel CM, Herzog MH (2010) Electrical source dynamics in three functional localizer paradigms. Neuroimage 53:257–267. doi: 10.1016/j.neuroimage.2010.06.037 CrossRefPubMedGoogle Scholar
  31. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. doi: 10.1146/ CrossRefPubMedGoogle Scholar
  32. Rolfs M, Jonikaitis D, Deubel H, Cavanagh P (2011) Predictive remapping of attention across eye movements. Nat Neurosci 14:252–256. doi: 10.1038/nn.2711 CrossRefPubMedGoogle Scholar
  33. Rouder JN, Morey RD, Speckman PL, Province JM (2012) Default Bayes factors for ANOVA designs. J Math Psychol 56:356–374CrossRefGoogle Scholar
  34. Sereno MI, Dale AM, Reppas JB et al (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893CrossRefPubMedGoogle Scholar
  35. Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489CrossRefPubMedGoogle Scholar
  36. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-D proportional system: an approach to cerebral imaging. Thieme, New YorkGoogle Scholar
  37. Tanaka E, Noguchi Y, Kakigi R, Kaneoke Y (2007) Human cortical response to various apparent motions: a magnetoencephalographic study. Neurosci Res 59:172–182. doi: 10.1016/j.neures.2007.06.1471 CrossRefGoogle Scholar
  38. Taylor MJ (2002) Non-spatial attentional effects on P1. Clin Neurophysiol 113:1903–1908CrossRefPubMedGoogle Scholar
  39. Ternus J (1926) Experimentelle Untersuchung über phänomenale Identität. Psychol Forsch 7:81–136CrossRefGoogle Scholar
  40. Von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–476CrossRefGoogle Scholar
  41. Wurtz RH (2008) Neuronal mechanisms of visual stability. Vision Res 48:2070–2089. doi: 10.1016/j.visres.2008.03.021 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Evelina Thunell
    • 1
  • Gijs Plomp
    • 1
    • 2
  • Haluk Ögmen
    • 3
  • Michael H. Herzog
    • 1
  1. 1.Laboratory of Psychophysics, Brain Mind InstituteÉcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
  2. 2.Functional Brain Mapping Lab, Department of Fundamental NeuroscienceUniversity of GenevaGeneva 4Switzerland
  3. 3.Department of Electrical and Computer Engineering, Center for Neuro-Engineering and Cognitive ScienceUniversity of HoustonHoustonUSA

Personalised recommendations