Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

EEG Correlates of Relative Motion Encoding

Abstract

A large portion of the visual cortex is organized retinotopically, but perception is usually non-retinotopic. For example, a reflector on the spoke of a bicycle wheel appears to move on a circular or prolate cycloidal orbit as the bicycle moves forward, while in fact it traces out a curtate cycloidal trajectory. The moving bicycle serves as a non-retinotopic reference system to which the motion of the reflector is anchored. To study the neural correlates of non-retinotopic motion processing, we used the Ternus–Pikler display, where retinotopic processing in a stationary reference system is contrasted against non-retinotopic processing in a moving one. Using high-density EEG, we found similar brain responses for both retinotopic and non-retinotopic rotational apparent motion from the earliest evoked peak (around 120 ms) and throughout the rest of the visual processing, but only minor correlates of the motion of the reference system itself (mainly around 100–120 ms). We suggest that the visual system efficiently discounts the motion of the reference system from early on, allowing a largely reference system independent encoding of the motion of object parts.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allison T, Puce A, McCarthy G (2000) Social perception from visual cues: role of the STS region. Trends Cogn Sci 4:267–278

  2. Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102:2704–2718. doi:10.1152/jn.00102.2009

  3. Bach M (1996) The “Freiburg Visual Acuity Test”—automatic measurement of the visual acuity. Optom Vis Sci 73:49–53

  4. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. R Stat Soc Ser B 57:289–300

  5. Boi M, Ögmen H, Krummenacher J et al (2009) A (fascinating) litmus test for human retino- vs. non-retinotopic processing. J Vis 9:1–11. doi:10.1167/9.13.5

  6. Breitmeyer BG, Ritter A (1986a) The role of visual pattern persistence in bistable stroboscopic motion. Vis Res 26:1801–1806

  7. Breitmeyer BG, Ritter A (1986b) Visual persistence and the effect of eccentric viewing, element size, and frame duration on bistable stroboscopic motion percepts. Percept Psychophys 39:275–280

  8. Bridgeman B, Van der Heijden AHC, Velichkovsky BM (1994) A theory of visual stability across saccadic eye movements. Behav Brain Sci 17:247–258. doi:10.1017/S0140525X00034361

  9. Brunet D, Murray MM, Michel CM (2011) Spatiotemporal analysis of multichannel EEG: CARTOOL. Comput Intell Neurosci 2011:813870. doi:10.1155/2011/813870

  10. de Peralta Grave, Menendez R, Murray MM, Michel CM et al (2004) Electrical neuroimaging based on biophysical constraints. Neuroimage 21:527–539. doi:10.1016/j.neuroimage.2003.09.051

  11. Decety J, Grèzes J (1999) Neural mechanisms subserving the perception of human actions. Trends Cogn Sci 3:172–178

  12. Duhamel J-R, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

  13. Duncker K (1929) Über induzierte Bewegung. (Eine Betrag zur Theorie optisch wahrgenommener Bewegung.). Psychol Forsch 12:180–259

  14. Gardner JL, Merriam EP, Movshon JA, Heeger DJ (2008) Maps of visual space in human occipital cortex are retinotopic, not spatiotopic. J Neurosci 28:3988–3999. doi:10.1523/JNEUROSCI.5476-07.2008

  15. Genovese CR, Lazar NA, Nichols T (2002) Thresholding of statistical maps in functional neuroimaging using the false discovery rate. Neuroimage 15:870–878. doi:10.1006/nimg.2001.1037

  16. Goebel R, Khorram-Sefat D, Muckli L et al (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10:1563–1573

  17. Johansson G (1950) Configurations in event perception, an experimental study. Almqvist & Wiksells, Uppsala

  18. Klimesch W (2011) Evoked alpha and early access to the knowledge system: the P1 inhibition timing hypothesis. Brain Res 1408:52–71. doi:10.1016/j.brainres.2011.06.003

  19. Kuba M, Kubová Z, Kremlácek J, Langrová J (2007) Motion-onset VEPs: characteristics, methods, and diagnostic use. Vis Res 47:189–202. doi:10.1016/j.visres.2006.09.020

  20. Kubová Z, Kuba M, Spekreijse H, Blakemore C (1995) Contrast dependence of motion-onset and pattern-reversal evoked potentials. Vis Res 35:197–205

  21. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621

  22. Liu T, Slotnick SD, Yantis S (2004) Human MT+ mediates perceptual filling-in during apparent motion. Neuroimage 21:1772–1780. doi:10.1016/j.neuroimage.2003.12.025

  23. Mesulam MM (1981) A cortical network for directed attention and unilateral neglect. Ann Neurol 10:309–325

  24. Muckli L, Kriegeskorte N, Lanfermann H et al (2002) Apparent motion: event-related functional magnetic resonance imaging of perceptual switches and States. J Neurosci 22:RC219

  25. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20:249–264. doi:10.1007/s10548-008-0054-5

  26. Nobre AC, Rao A, Chelazzi L (2006) Selective attention to specific features within objects: behavioral and electrophysiological evidence. J Cogn Neurosci 18:539–561. doi:10.1162/jocn.2006.18.4.539

  27. Pantle A, Picciano L (1976) A multistable movement display: evidence for two separate motion systems in human vision. Science 193:500–502

  28. Pascual-Marqui RD, Michel CM, Lehmann D (1995) Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng 42:658–665. doi:10.1109/10.391164

  29. Pikler J (1917) Sinnesphysiologische Untersuchungen. Barth, Leipzig

  30. Plomp G, Michel CM, Herzog MH (2010) Electrical source dynamics in three functional localizer paradigms. Neuroimage 53:257–267. doi:10.1016/j.neuroimage.2010.06.037

  31. Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42. doi:10.1146/annurev.ne.13.030190.000325

  32. Rolfs M, Jonikaitis D, Deubel H, Cavanagh P (2011) Predictive remapping of attention across eye movements. Nat Neurosci 14:252–256. doi:10.1038/nn.2711

  33. Rouder JN, Morey RD, Speckman PL, Province JM (2012) Default Bayes factors for ANOVA designs. J Math Psychol 56:356–374

  34. Sereno MI, Dale AM, Reppas JB et al (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268:889–893

  35. Sperry RW (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43:482–489

  36. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-D proportional system: an approach to cerebral imaging. Thieme, New York

  37. Tanaka E, Noguchi Y, Kakigi R, Kaneoke Y (2007) Human cortical response to various apparent motions: a magnetoencephalographic study. Neurosci Res 59:172–182. doi:10.1016/j.neures.2007.06.1471

  38. Taylor MJ (2002) Non-spatial attentional effects on P1. Clin Neurophysiol 113:1903–1908

  39. Ternus J (1926) Experimentelle Untersuchung über phänomenale Identität. Psychol Forsch 7:81–136

  40. Von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37:464–476

  41. Wurtz RH (2008) Neuronal mechanisms of visual stability. Vision Res 48:2070–2089. doi:10.1016/j.visres.2008.03.021

Download references

Acknowledgments

We thank Marc Repnow for technical support. This work was supported by the Swiss National Science Foundation (SNF) Project “Basics of visual processing: from retinotopic encoding to non-retinotopic representations”.

Author information

Correspondence to Evelina Thunell.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thunell, E., Plomp, G., Ögmen, H. et al. EEG Correlates of Relative Motion Encoding. Brain Topogr 29, 273–282 (2016). https://doi.org/10.1007/s10548-015-0458-y

Download citation

Keywords

  • Apparent motion
  • Electroencephalography (EEG)
  • Non-retinotopic processing
  • Ternus–Pikler display