Skip to main content

Advertisement

Log in

Novel Multipin Electrode Cap System for Dry Electroencephalography

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Current usage of electroencephalography (EEG) is limited to laboratory environments. Self-application of a multichannel wet EEG caps is practically impossible, since the application of state-of-the-art wet EEG sensors requires trained laboratory staff. We propose a novel EEG cap system with multipin dry electrodes overcoming this problem. We describe the design of a novel 24-pin dry electrode made from polyurethane and coated with Ag/AgCl. A textile cap system holds 97 of these dry electrodes. An EEG study with 20 volunteers compares the 97-channel dry EEG cap with a conventional 128-channel wet EEG cap for resting state EEG, alpha activity, eye blink artifacts and checkerboard pattern reversal visual evoked potentials. All volunteers report a good cap fit and good wearing comfort. Average impedances are below 150 kΩ for 92 out of 97 dry electrodes, enabling recording with standard EEG amplifiers. No significant differences are observed between wet and dry power spectral densities for all EEG bands. No significant differences are observed between the wet and dry global field power time courses of visual evoked potentials. The 2D interpolated topographic maps show significant differences of 3.52 and 0.44 % of the map areas for the N75 and N145 VEP components, respectively. For the P100 component, no significant differences are observed. Dry multipin electrodes integrated in a textile EEG cap overcome the principle limitations of wet electrodes, allow rapid application of EEG multichannel caps by non-trained persons, and thus enable new fields of application for multichannel EEG acquisition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Askamp J, van Putten MJ (2014) Mobile EEG in epilepsy. Int J Psychophysiol 91(1):30–35. doi:10.1016/j.ijpsycho.2013.09.002

    Article  PubMed  Google Scholar 

  • Chi YM, Wang YT, Wang Y, Maier C, Jung TP, Cauwenberghs G (2012) Dry and noncontact EEG sensors for mobile brain-computer interfaces. IEEE Trans Neural Syst Rehabil Eng 20(2):228–235. doi:10.1109/TNSRE.2011.2174652

    Article  PubMed  Google Scholar 

  • D’Angelo LT, Parlow J, Spiessl W, Hoch S, Lueth TC (2010) A system for unobtrusive in-car vital parameter acquisition and processing. In: Proceedings of the 4th international conference on pervasive computing technologies for healthcare 2010, Munich, Germany, New York, pp 1–7

  • Daly JJ, Wolpaw JR (2008) Brain-computer interfaces in neurological rehabilitation. Lancet Neurol 7(11):1032–1043. doi:10.1016/S1474-4422(08)70223-0

    Article  PubMed  Google Scholar 

  • De Vos M, Debener S (2014) Mobile EEG: towards brain activity monitoring during natural action and cognition. Int J Psychophysiol 91(1):1–2. doi:10.1016/j.ijpsycho.2013.10.008

    Article  PubMed  Google Scholar 

  • Debener S, Minow F, Emkes R, Gandras K, De Vos M (2012) How about taking a low-cost, small, and wireless EEG for walk? Psychophysiology 49:1449–1453. doi:10.1111/j.1469-8986.2012.01471.x

    Article  Google Scholar 

  • Di Fronso S, Bertollo M, Comani S (2015) Neural markers of performance states in an Olympic Athlete: a case study in air-pistol shooting. J Sport Sci

  • Fiedler P, Brodkorb S, Fonseca C, Vaz F, Zanow F, Haueisen J (2010) Novel TiN-based dry EEG electrodes: Influence of electrode shape and number on contact impedance and signal quality. In: Panagiotis DB, Pallikarakis N (eds) IFMBE proceedings of the xii mediterranean conference on medical and biological engineering and computing, 2010 May 27–30, Chalkidiki, Greece. Springer, Berlin, pp 418–421

    Chapter  Google Scholar 

  • Fiedler P, Haueisen J, Jannek D, Griebel S, Zentner L, Vaz F, Zanow F, Haueisen J (2014) Comparison of three types of dry electrodes for electroencephalography. Acta Imeko 3(3):33–37

    Google Scholar 

  • Fiedler P, Griebel S, Pedrosa P, Fonseca C, Vaz F, Zentner L, Zanow F, Haueisen J (2015) Multichannel EEG with novel Ti/TiN dry electrodes. Sens Actuator A 221:139–147. doi:10.1016/j.sna.2014.10.010

    Article  CAS  Google Scholar 

  • Graichen U, Eichardt R, Fiedler P, Strohmeier D, Zanow F, Haueisen J (2015) SPHARA—A generalized spatial Fourier analysis for multi-sensor systems with non-uniformly arranged sensors: application to EEG. PLoS One

  • Greischar LL, Burghy CA, van Reekum CM, Jackson DC, Pizzagalli DA, Mueller C, Davidson RJ (2004) Effects of electrode density and electrolyte spreading in dense array electroencephalographic recording. Clin Neurophysiol 115(3):710–720. doi:10.1016/j.clinph.2003.10.028

    Article  PubMed  Google Scholar 

  • Hoddes E, Dement W, Zarcone V (1972) The development and use of the Stanford sleepiness scale (SSS). Psychophysiology 9:150

    Google Scholar 

  • Hwang HJ, Kim S, Choi S, Im CH (2013) EEG-based brain-computer interfaces: a thorough literature survey. Int J Hum Comput Interact 29(12):814–826. doi:10.1080/10447318.2013.780869

    Article  Google Scholar 

  • Jordan KG (2004) Emergency EEG and continuous EEG monitoring in acute ischemic stroke. J Clin Neurophysiol 21(5):341–352

    PubMed  Google Scholar 

  • Junghöfer M, Elbert T, Tucker DM, Braun C (1999) The polar average reference effect: a bias in estimating the head surface integral in EEG recording. Clin Neurophysiol 110(6):1149–1155

    Article  PubMed  Google Scholar 

  • Klem GH, Luders HO, Jasper HH, Elger C (1999) The ten-twenty electrode system ofthe International Federation. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol Suppl 52:3–6

  • Lehmann D, Skrandies W (1984) Spatial analysis of evoked potentials in man—a review. Progr Neurobiol 23(3):227–250

    Article  CAS  Google Scholar 

  • Liao LD, Lin CT, McDowell K, Wickenden AE, Gramann K, Tzyy-Ping J, Li-Wei K, Jyh-Yeong C (2012) Biosensor technologies for augmented brain-computer interfaces in the next decades. Proc IEEE 100:1553–1566. doi:10.1109/JPROC.2012.2184829

    Article  CAS  Google Scholar 

  • Lopez-Gordo MA, Sanchez-Morillo D, Pelayo Valle F (2014) Dry EEG electrodes. Sensors 14(7):12847–12870. doi:10.3390/s140712847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Michel V, Mazzola L, Lemesle M, Vercueil L (2015) Long-term EEG in adults: sleep-deprived EEG (SDE), ambulatory EEG (Amb-EEG) and long-term video-EEG recording (LTVER). Clin Neurophysiol. doi:10.1016/j.neucli.2014.11.004

    Google Scholar 

  • Nicolas-Alonso LF, Gomez-Gil J (2012) Brain computer interfaces, a review. Sensors 12(2):1211–1279. doi:10.3390/s120201211

    Article  PubMed Central  PubMed  Google Scholar 

  • Odom JV, Bach M, Brigell M, Holder GE, McCulloch DL, Tormene AP, Vaegan (2010) ISCEV standard for clinical visual evoked potentials (2009 update). Doc Ophthalmol 120(1):111–119. doi:10.1007/s10633-009-9195-4

    Article  PubMed  Google Scholar 

  • Pedrosa P, Machado D, Fiedler P, Alves E, Barradas NP, Haueisen J, Vaz F, Fonseca C (2015a) Electrochemical and structural characterization of nanocomposite Ag y:TiN x thin films for dry bioelectrodes: the effect of the N/Ti ratio and Ag content. Electrochim Acta 153:602–611. doi:10.1016/j.electacta.2014.12.020

    Article  CAS  Google Scholar 

  • Pedrosa P, Fiedler P, Lopes C, Alves E, Barradas NP, Haueisen J, Vaz F, Fonseca C (2015b) Ag:TiN-coated polyurethane for dry biopotential electrodes: from polymer plasma activation to the first EEG measurements. Plasma Process Polym.

  • Searle A, Kirkup L (2000) A direct comparison of wet, dry and insulating bioelectric recording electrodes. Physiol Meas 21(2):271–283

    Article  CAS  PubMed  Google Scholar 

  • Steinisch M, Tana MG, Comani S (2013) A post-stroke rehabilitation system integrating robotics, VR and high-resolution EEG imaging. IEEE Trans Neural Syst Rehabil Eng 21(5):849–859. doi:10.1109/TNSRE.2013.2267851

    Article  PubMed  Google Scholar 

  • Teplan M (2002) Fundamentals of EEG measurement. Meas Sci Technol 2(2):1–11

    Google Scholar 

  • Thompson T, Steffert T, Ros T, Leach J, Gruzelier J (2008) EEG applications for sport and performance. Methods 45(4):279–288. doi:10.1016/j.ymeth.2008.07.006

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the German Federal Ministry of Education and Research (03IPT605A), the German Academic Exchange Service (D/57036536), the Thüringer Aufbaubank and the European Social Fund (2012 FGR 0014), and the European Union (FP7-PEOPLE Marie Curie IAPP project 610950).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Fiedler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fiedler, P., Pedrosa, P., Griebel, S. et al. Novel Multipin Electrode Cap System for Dry Electroencephalography. Brain Topogr 28, 647–656 (2015). https://doi.org/10.1007/s10548-015-0435-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-015-0435-5

Keywords

Navigation