Brain Topography

, Volume 28, Issue 6, pp 771–784 | Cite as

Real-Time MEG Source Localization Using Regional Clustering

  • Christoph Dinh
  • Daniel Strohmeier
  • Martin Luessi
  • Daniel Güllmar
  • Daniel Baumgarten
  • Jens Haueisen
  • Matti S. Hämäläinen
Original Paper

Abstract

With its millisecond temporal resolution, Magnetoencephalography (MEG) is well suited for real-time monitoring of brain activity. Real-time feedback allows the adaption of the experiment to the subject’s reaction and increases time efficiency by shortening acquisition and off-line analysis. Two formidable challenges exist in real-time analysis: the low signal-to-noise ratio (SNR) and the limited time available for computations. Since the low SNR reduces the number of distinguishable sources, we propose an approach which downsizes the source space based on a cortical atlas and allows to discern the sources in the presence of noise. Each cortical region is represented by a small set of dipoles, which is obtained by a clustering algorithm. Using this approach, we adapted dynamic statistical parametric mapping for real-time source localization. In terms of point spread and crosstalk between regions the proposed clustering technique performs better than selecting spatially evenly distributed dipoles. We conducted real-time source localization on MEG data from an auditory experiment. The results demonstrate that the proposed real-time method localizes sources reliably in the superior temporal gyrus. We conclude that real-time source estimation based on MEG is a feasible, useful addition to the standard on-line processing methods, and enables feedback based on neural activity during the measurements.

Keywords

Magnetoencephalography Real-time Source localization Minimum-norm estimates K-means clustering  Brain atlas 

Supplementary material

Supplementary material 1 (mp4 26 KB)

References

  1. Babadi B, Obregon-Henao G, Lamus C, Hamalainen MS, Brown EN, Purdon PL (2014) A subspace pursuit-based iterative greedy hierarchical solution to the neuromagnetic inverse problem. NeuroImage 87:427–443. doi:10.1016/j.neuroimage.2013.09.008 PubMedCentralCrossRefPubMedGoogle Scholar
  2. Besserve M, Martinerie J, Garnero L (2011) Improving quantification of functional networks with EEG inverse problem: evidence from a decoding point of view. NeuroImage 55(4):1536–1547. doi:10.1016/j.neuroimage.2011.01.056 CrossRefPubMedGoogle Scholar
  3. Chowdhury RA, Lina JM, Kobayashi E, Grova C (2013) MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical Bayesian approaches. PLOS One 8(2):e55,969. doi:10.1371/journal.pone.0055969 CrossRefGoogle Scholar
  4. Dale AM, Liu AK, Fischl B, Buckner RL, Belliveau JW, Lewine JD, Halgren E (2000) Dynamic statistical parametric mapping: combining fMRI and MEG for high-resolution imaging of cortical activity. Neuron 26(1):55–67. doi:10.1016/S0896-6273(00)81138-1 CrossRefPubMedGoogle Scholar
  5. Destrieux CE, Fischl B, Dale A, Halgren E (2010) Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature. NeuroImage 53(1):1–15. doi:10.1016/j.neuroimage.2010.06.010 PubMedCentralCrossRefPubMedGoogle Scholar
  6. Digia Plc: Qt 5.3. http://qt-project.org/ (1991–2014)
  7. Dinh C, Luessi M, Sun L, Haueisen J, Hamalainen MS (2013) MNE-X: MEG/EEG real-time acquisition, real-time processing, and real-time source localization framework. Biomed Eng 58(1):4184. doi:10.1515/bmt-2013-4184 Google Scholar
  8. Dinh C, Strohmeier D, Haueisen J, Güllmar D (2012) Brain atlas based region of interest selection for real-time source localization using k-means lead field clustering and RAP-MUSIC. Biomed Eng 57(Suppl 1):813. doi:10.1515/bmt-2012-4316 Google Scholar
  9. Eichardt R, Baumgarten D, Petković B, Wiekhorst F, Trahms L, Haueisen J (2012) Adapting source grid parameters to improve the condition of the magnetostatic linear inverse problem of estimating nanoparticle distributions. Med Biol Eng Comput 50(10):1081–1089. doi:10.1007/s11517-012-0950-4 CrossRefPubMedGoogle Scholar
  10. Fischl B (2012) FreeSurfer. NeuroImage 62(2):774–781. doi:10.1016/j.neuroimage.2012.01.021 PubMedCentralCrossRefPubMedGoogle Scholar
  11. Friedman M (1937) The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J Am Stat Assoc 32:675–701. doi:10.1080/01621459.1937.10503522 CrossRefGoogle Scholar
  12. Gramfort A, Luessi M, Larson E, Engemann DA, Strohmeier D, Brodbeck CM, Parkkonen L, Hamalainen MS (2013) MNE software for processing MEG and EEG data. NeuroImage. doi:10.1016/j.neuroimage.2013.10.027 Google Scholar
  13. Hamalainen MS, Hari R, Ilmoniemi RJ, Knuutila J, Lounasmaa OV (1993) Magnetoencephalography-theory, instrumentation, and applications to noninvasive studies of the working human brain. Rev Mod Phys 65(2):413–497. doi:10.1103/RevModPhys.65.413 CrossRefGoogle Scholar
  14. Hamalainen MS, Ilmoniemi RJ (1994) Interpreting magnetic fields of the brain: minimum norm estimates. Med Biol Eng Comput 32(1):35–42. doi:10.1007/BF02512476 CrossRefPubMedGoogle Scholar
  15. Jones SR, Kerr CE, Wan Q, Pritchett DL, Hamalainen MS, Moore CI (2010) Cued spatial attention drives functionally relevant modulation of the mu rhythm in primary somatosensory cortex. J Neurosci 30(41):13,760–13,765. doi:10.1523/JNEUROSCI.2969-10.2010 CrossRefGoogle Scholar
  16. Lin FH, Witzel T, Ahlfors SP, Stufflebeam SM, Belliveau JW, Hämäläinen MS (2006) Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates. NeuroImage 31(1):160–71. doi:10.1016/j.neuroimage.2005.11.054 CrossRefPubMedGoogle Scholar
  17. Lloyd SP (1982) Least squares quantization in PCM. IEEE Trans Inf Theory 28(2):129–137. doi:10.1109/TIT.1982.1056489 CrossRefGoogle Scholar
  18. Mann HB, Whitney DR (1947) On a test of whether one of two random variables is stochastically larger than the other. Ann Math Stat 18(1):50–60. doi:10.1214/aoms/1177730491 CrossRefGoogle Scholar
  19. Michel CM, Pascual-Marqui RD, Strik WK, Koenig T, Lehmann D (1995) Frequency domain source localization shows state-dependent diazepam effects in 47-channel EEG. J Neural Trans Gen Sect 99(1–3):157–171. doi:10.1007/BF01271476 CrossRefGoogle Scholar
  20. Ou W, Golland P, Hamalainen MS (2007) Sources of variability in MEG. Med Image Comput Comput Assist Interv 10(Pt 2):751–759. doi:10.1007/978-3-540-75759-7-91 PubMedCentralPubMedGoogle Scholar
  21. Papadelis C, Harini C, Ahtam B, Doshi C, Grant E, Okada Y (2013) Current and emerging potential for magnetoencephalography in pediatric epilepsy. J Pediatr Epilepsy 2(1):73–85Google Scholar
  22. Soekadar S, Birbaumer N, Cohen L (2011) Brain-computer-interfaces in the rehabilitation of stroke and neurotrauma. In: Kenji K, Cohen LG (eds) Systems Neuroscience Rehabilitation. Springer, Japan, pp 3–18. doi:10.1007/978-4-431-54008-3-1 CrossRefGoogle Scholar
  23. Sudre G, Parkkonen L, Bock E, Baillet S, Wang W, Weber DJ (2011) rtMEG: a real-time software interface for magnetoencephalography. Comput Intell Neurosci 2011:327,953. doi:10.1155/2011/327953 Google Scholar
  24. Supek S, Aine CJ (1993) Simulation studies of multiple dipole neuromagnetic source localization: model order and limits of source resolution. IEEE Trans Bio Med Eng 40(6):529–540. doi:10.1109/10.237672 CrossRefGoogle Scholar
  25. Tarkiainen A, Liljeström M, Seppä M, Salmelin R (2003) The 3D topography of MEG source localization accuracy: effects of conductor model and noise. Clin Neurophys 114(10):1977–1992. doi:10.1016/S1388-2457(03)00195-0 CrossRefGoogle Scholar
  26. Wehner DT, Hämäläinen MS, Mody M, Ahlfors SP (2008) Head movements of children in MEG: quantification, effects on source estimation, and compensation. NeuroImage 40(2):541–50. doi:10.1016/j.neuroimage.2007.12.026 PubMedCentralCrossRefPubMedGoogle Scholar
  27. Weisend M, Hanlon F, Montaño R, Ahlfors SP, Leuthold A, Pantazis D, Mosher JC, Georgopoulos A, Hämäläinen MS, Aine C (2007) Paving the way for cross-site pooling of magnetoencephalography (MEG) data. Int Congr Ser 1300:615–618. doi:10.1016/j.ics.2006.12.095 CrossRefGoogle Scholar
  28. Wilcoxon F (1945) Individual Comparisons by ranking methods. Biom Bull 1(6):80–83CrossRefGoogle Scholar
  29. Ziegler DA, Pritchett DL, Hosseini-Varnamkhasti P, Corkin S, Hamalainen MS, Moore CI, Jones SR (2010) Transformations in oscillatory activity and evoked responses in primary somatosensory cortex in middle age: A combined computational neural modeling and MEG study. NeuroImage 52(3):897–912. doi:10.1016/j.neuroimage.2010.02.004 PubMedCentralCrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Christoph Dinh
    • 1
    • 2
  • Daniel Strohmeier
    • 2
  • Martin Luessi
    • 1
  • Daniel Güllmar
    • 3
  • Daniel Baumgarten
    • 2
  • Jens Haueisen
    • 2
    • 4
  • Matti S. Hämäläinen
    • 1
  1. 1.Massachusetts General Hospital - Massachusetts Institute of Technology - Harvard Medical SchoolAthinoula A. Martinos Center for Biomedical ImagingCharlestownUSA
  2. 2.Institute of Biomedical Engineering and InformaticsTechnische Universität IlmenauIlmenauGermany
  3. 3.Medical Physics Group, Institute of Diagnostic and Interventional RadiologyFriedrich-Schiller-Universität JenaJenaGermany
  4. 4.Biomagnetic Center, Department of NeurologyFriedrich-Schiller-Universität JenaJenaGermany

Personalised recommendations