Skip to main content

Advertisement

Log in

Catching the Invisible: Mesial Temporal Source Contribution to Simultaneous EEG and SEEG Recordings

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

An Erratum to this article was published on 11 June 2015

Abstract

Mesial temporal sources are presumed to escape detection in scalp electroencephalographic recordings. This is attributed to the deep localization and infolded geometry of mesial temporal structures that leads to a cancellation of electrical potentials, and to the blurring effect of the superimposed neocortical background activity. In this study, we analyzed simultaneous scalp and intracerebral electroencephalographic recordings to delineate the contribution of mesial temporal sources to scalp electroencephalogram. Interictal intracerebral spike networks were classified in three distinct categories: solely mesial, mesial as well as neocortical, and solely neocortical. The highest and earliest intracerebral spikes generated by the leader source of each network were marked and the corresponding simultaneous intracerebral and scalp electroencephalograms were averaged and then characterized both in terms of amplitude and spatial distribution. In seven drug-resistant epileptic patients, 21 interictal intracerebral networks were identified: nine mesial, five mesial plus neocortical and seven neocortical. Averaged scalp spikes arising respectively from mesial, mesial plus neocortical and neocortical networks had a 7.1 (n = 1,949), 36.1 (n = 628) and 10 (n = 1,471) µV average amplitude. Their scalp electroencephalogram electrical field presented a negativity in the ipsilateral anterior and basal temporal electrodes in all networks and a significant positivity in the fronto-centro-parietal electrodes solely in the mesial plus neocortical and neocortical networks. Topographic consistency test proved the consistency of these different scalp electroencephalogram maps and hierarchical clustering clearly differentiated them. In our study, we have thus shown for the first time that mesial temporal sources (1) cannot be spontaneously visible (mean signal-to-noise ratio −2.1 dB) on the scalp at the single trial level and (2) contribute to scalp electroencephalogram despite their curved geometry and deep localization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

IIS:

Interictal intracerebral spikes

ISS:

Interictal scalp spikes

M:

Mesial epileptic network

NC:

Neocortical epileptic network

M + NC:

Mesial and neocortical epileptic network

MTL:

Mesial temporal lobe

SEEG:

Stereoelectroencephalography

References

  • Abraham K, Ajmone-Marsan CA (1958) Patterns of cortical discharges and their relation to routine scalp electroencephalography. Electroencephalogr Clin Neurophysiol 10:447–461

    Article  CAS  PubMed  Google Scholar 

  • Alarcon G, Guy CN, Binnie CD, Walker SR, Elwes RD, Polkey CE (1994) Intracerebral propagation of interictal activity in partial activity: implications for source localisation. J Neurol Neurosurg Psychiatry 57:435–449

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Alarcon G, Garcia Seoane JJ, Binnie CD, Martin Miguel MC, Juler J, Polkey CE et al (1997) Origin and propagation of interictal discharges in the acute electrocorticogram. Implications for pathophysiology and surgical treatment of temporal lobe epilepsy. Brain 120:2259–2282

    Article  PubMed  Google Scholar 

  • Barba C, Barbati G, Minotti L, Hoffmann D, Kahane P (2007) Ictal clinical and scalp-EEG findings differentiating temporal lobe epilepsies from temporal ‘plus’ epilepsies. Brain 130:1957–1967

    Article  CAS  PubMed  Google Scholar 

  • Bartolomei F, Wendling F, Bellanger JJ, Régis J, Chauvel P (2001) Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clin Neurophysiol 112:1746–1760

    Article  CAS  PubMed  Google Scholar 

  • Bartolomei F, Chauvel P, Wendling F (2008) Epileptogenicity of brain structures in human temporal lobe epilepsy: a quantified study from intracerebral EEG. Brain 131:1818–1830

    Article  PubMed  Google Scholar 

  • Baumgartner C, Lindinger G, Ebner A, Aull S, Serles W, Olbrich A et al (1995) Propagation of interictal epileptic activity in temporal lobe epilepsy. Neurology 45:118–122

    Article  CAS  PubMed  Google Scholar 

  • Bettus G, Wendling F, Guye M, Valton L, Régis J, Chauvel P, Bartolomei F (2008) Enhanced EEG functional connectivity in mesial temporal lobe epilepsy. Epilepsy Res 81:58–68

    Article  PubMed  Google Scholar 

  • Bragin A, Wilson CL, Engel J Jr (2000) Chronic epileptogenesis requires development of a network of pathologically interconnected neuron clusters: a hypothesis. Epilepsia 41(Suppl 6):S144–S152

    Article  PubMed  Google Scholar 

  • Chang BS, Schomer D, Niedermeyer E (2011a) Epilepsy in adults and the elderly. In: Schomer D, Lopes da Silva F (eds) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields, MD: Wolters-Kluwer Lippincott Williams Wilkins, Baltimore, p 541–562

  • Chang BS, Schomer D, Niedermeyer E (2011b) Normal EEG and sleep: adults and elderly. In: Schomer D, Lopes da Silva F (eds) Niedermeyer’s electroencephalography: basic principles, clinical applications, and related fields. MD: Wolters-Kluwer Lippincott Williams & Wilkins, Baltimore, p 183–214

  • Chassoux F, Semah F, Bouilleret V, Landre E, Devaux B, Turak B et al (2004) Metabolic changes and electro-clinical patterns in mesio-temporal lobe epilepsy: a correlative study. Brain 127:164–174

    Article  PubMed  Google Scholar 

  • Ebersole JS (2000) Sublobar localization of temporal neocortical epileptogenic foci by source modeling. Adv Neurol 84:353–363

    CAS  PubMed  Google Scholar 

  • Ebersole JS, Wade PB (1991) Spike voltage topography identifies two types of fronto-temporal epileptic foci. Neurology 41:1425–1431

    Article  CAS  PubMed  Google Scholar 

  • Eisenschenk S, Gilmore RL, Cibula JE, Roper SN (2001) Lateralization of temporal lobe foci: depth versus subdural electrodes. Clin Neurophysiol 112:836–844

    Article  CAS  PubMed  Google Scholar 

  • Gavaret M, Badier JM, Marquis P, Bartolomei F, Chauvel P (2004) Electric source imaging in temporal lobe epilepsy. J Clin Neurophysiol 21:267–282

    Article  PubMed  Google Scholar 

  • Gil-Nagel A, Risinger MW (1997) Ictal semiology in hippocampal versus extra hippocampal temporal lobe epilepsy. Brain 120:183–192

    Article  PubMed  Google Scholar 

  • Grouiller F, Thornton RC, Groening K, Spinelli L, Duncan JS, Schaller K et al (2011) With or without spikes: localization of focal epileptic activity by simultaneous electroencephalography and functional magnetic resonance imaging. Brain 134:2867–2886

    Article  PubMed Central  PubMed  Google Scholar 

  • Harroud A, Bouthillier A, Weil AG, Nguyen DK (2012) Temporal lobe epilepsy surgery failures: a review. Epilepsy Res Treat 2012:201651

    PubMed Central  PubMed  Google Scholar 

  • Homan RW, Jones MC, Tawat S (1988) Anterior temporal electrodes in complex partial seizures. Electroencephalogr Clin Neurophysiol 70:105–109

    Article  CAS  PubMed  Google Scholar 

  • Jayakar P, Duchowny M, Resnick TJ, Alvarez LA (1991) Localization of seizure foci: pitfalls and caveats. J Clin Neurophysiol 8:414–431

    Article  CAS  PubMed  Google Scholar 

  • Jonas J, Descoins M, Koessler L, Colnat-Coulbois S, Sauvée M, Guye M et al (2012) Focal electrical intracerebral stimulation of a face-sensitive area causes transient prosopagnosia. Neuroscience 222:281–288

    Article  CAS  PubMed  Google Scholar 

  • Kahane P, Landré E, Minotti L, Francione S, Ryvlin P (2006) The Bancaud and Talairach view on the epileptogenic zone: a working hypothesis. Epileptic Disord 8:S16–S26

    PubMed  Google Scholar 

  • Koenig T, Melie-García L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23:233–242

    Article  PubMed  Google Scholar 

  • Koessler L, Maillard L, Benhadid A, Vignal JP, Felblinger J, Vespignani H et al (2009) Automated cortical projection of EEG sensors: anatomical correlation via the international 10-10 system. Neuroimage 46:64–72

    Article  CAS  PubMed  Google Scholar 

  • Koessler L, Benar C, Maillard L, Badier JM, Vignal JP, Bartolomei F et al (2010) Source localization of ictal epileptic activity investigated by high resolution EEG and validated by SEEG. Neuroimage 51:642–653

    Article  PubMed  Google Scholar 

  • Lantz G, Holub M, Ryding E, Rosén I (1996) Simultaneous intracranial and extracranial recording of interictal epileptiform activity in patients with drug resistant partial epilepsy: patterns of conduction and results from dipole reconstructions. Electroencephalogr Clin Neurophysiol 99:69–78

    Article  CAS  PubMed  Google Scholar 

  • Lantz G, Grave de Peralta R, Spinelli L, Seeck M, Michel CM (2003) Epileptic source localization with high density EEG: how many electrodes are needed? Clin Neurophysiol 114:63–69

    Article  CAS  PubMed  Google Scholar 

  • Lieb JP, Walsh GO, Babb TL, Walter RD, Crandall PH (1976) A comparison of EEG seizure patterns recorded with surface and depth electrodes in patients with temporal lobe epilepsy. Epilepsia 17:137–160

    Article  CAS  PubMed  Google Scholar 

  • Lopes da Silva, Van Rotterdam A (1993) Biophysical aspects of EEG and magnetoencephalogram generation. In: Niedermeyer E, Lopes da Silva F (edn) Electroencephalography: basic principles, clinical applications, and related fields. MD: Williams and Wilkins, Baltimore, p 93–109

  • Maillard L, Vignal JP, Gavaret M, Guye M, Biraben A, McGonigal A et al (2004) Semiologic and electrophysiologic correlations in temporal lobe seizure subtypes. Epilepsia 45:1590–1599

    Article  PubMed  Google Scholar 

  • Maillard L, Koessler L, Colnat-Coulbois S, Vignal JP, Louis-Dorr V, Marie PY (2009) Combined SEEG and source localization study of temporal lobe schizencephaly and polymicrogyria. Clin Neurophysiol 120:1628–1636

    Article  CAS  PubMed  Google Scholar 

  • Maillard L, Barbeau EJ, Baumann C, Koessler L, Benar C, Chauvel P et al (2011) From perception to recognition memory: time course and lateralization of neural substrates of word and abstract picture processing. J Cogn Neurosci 23:782–800

    Article  PubMed  Google Scholar 

  • Merlet I, Gotman J (1999) Reliability of dipole models of epileptic spikes. Clin Neurophysiol 110:1013–1028

    Article  CAS  PubMed  Google Scholar 

  • Merlet I, Garcia-Larrea L, Ryvlin P, Isnard J, Sindou M, Mauguiere F (1998) Topographical reliability of mesio-temporal sources of interictal spikes in temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol 107:206–212

    Article  CAS  PubMed  Google Scholar 

  • Mikuni N, Nagamine T, Ikeda A, Terada K, Taki W, Kimura J et al (1997) Simultaneous recording of epileptiform discharges by MEG and subdural electrodes in temporal lobe epilepsy. Neuroimage 5:298–306

    Article  CAS  PubMed  Google Scholar 

  • Nayak D, Valentín A, Alarcón G, García Seoane JJ, Brunnhuber F, Juler J et al (2004) Characteristics of scalp electrical fields associated with deep medial temporal epileptiform discharges. Clin Neurophysiol 115(6):1423–1435

    Article  PubMed  Google Scholar 

  • Ramantani G, Koessler L, Colnat-Coulbois S, Vignal JP, Isnard J, Catenoix H et al (2013) Intracranial evaluation of the epileptogenic zone in regional infrasylvian polymicrogyria. Epilepsia 54:296–304

    Article  PubMed  Google Scholar 

  • Sedat J, Duvernoy H (1990) Anatomical study of the temporal lobe. Correlations with nuclear magnetic resonance. J Neuroradiol 17:26–49

    CAS  PubMed  Google Scholar 

  • Spencer S, Spencer D (1994) Entorhinal-hippocampal interactions in medial temporal lobe epilepsy. Epilepsia 35:721–727

    Article  CAS  PubMed  Google Scholar 

  • Van ‘t Ent D, Manshanden I, Ossenblok P, Velis DN, Verbunt JP et al (2003) Spike cluster analysis in neocortical localization related epilepsy yields clinically significant equivalent source localization results in magnetoencephalogram (MEG). Clin Neurophysiol 114(10):1948–1962

    Article  PubMed  Google Scholar 

  • Walsh JE (1959) Large sample nonparametric rejection of outlying observations. Ann Inst Stat Math 10:223–232

    Article  Google Scholar 

  • Wennberg R, Cheyne D (2014) EEG source imaging of anterior temporal lobe spikes: validity and reliability. Clin Neurophysiol 125(5):886–902

    Article  PubMed  Google Scholar 

  • Wieser HG (2004) ILAE Commission on Neurosurgery of Epilepsy. ILAE Commission Report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia 45:695–714

    Article  PubMed  Google Scholar 

  • Wieser HG, Elger CE, Stodieck SR (1985) The ‘foramen ovale electrode’: a new recording method for the preoperative evaluation of patients suffering from mesio-basal temporal lobe epilepsy. Electroencephalogr Clin Neurophysiol 61:314–322

    Article  CAS  PubMed  Google Scholar 

  • Williamson PD, Thadani VM, French JA, Darcey TM, Mattson RH, Spencer SS et al (1998) Medial temporal lobe epilepsy: videotape analysis of objective clinical seizure characteristics. Epilepsia 39:1182–1188

    Article  CAS  PubMed  Google Scholar 

  • Yamazaki M, Tucker DM, Fujimoto A, Yamazoe T, Okanishi T, Yokota T, Enoki H, Yamamoto T (2012) Comparison of dense array EEG with simultaneous intracranial EEG for interictal spike detection and localization. Epilepsy Res 98(2–3):166–173

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The Authors would like to thank Cécile Popko (Université de Lorraine) for EEG-SEEG data management. This study was supported by the French Ministry of Health (PHRC 17-05, 2009) and the Regional Council of Lorraine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laurent Koessler.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10548_2014_417_MOESM1_ESM.tif

Supplementary material 1 (A) Averaged EEG signal and (B) 3D amplitude maps for the three spike networks in patient 1. The stars on the left of the electrode labels indicate that the corresponding averaged EEG signals at t 0 were statistically significant (Walsh’s test) (TIFF 2850 kb)

10548_2014_417_MOESM2_ESM.tif

Supplementary material 2 (A) Averaged EEG signal and (B) 3D amplitude maps for the two spike networks in patient 2. The stars on the left of the electrode labels indicate that the corresponding averaged EEG signals at t 0 were statistically significant (Walsh’s test) (TIFF 1532 kb)

10548_2014_417_MOESM3_ESM.tif

Supplementary material 3 (A) Averaged EEG signal and (B) 3D amplitude maps for the three spike networks in patient 3. The stars on the left of the electrode labels indicate that the corresponding averaged EEG signals at t 0 were statistically significant (Walsh’s test) (TIFF 2024 kb)

10548_2014_417_MOESM4_ESM.tif

Supplementary material 4 (A) Averaged EEG signal and (B) 3D amplitude maps for the two spike networks in patient 4. The stars on the left of the electrode labels indicate that the corresponding averaged EEG signals at t 0 were statistically significant (Walsh’s test) (TIFF 1516 kb)

10548_2014_417_MOESM5_ESM.tif

Supplementary material 5 (A) Averaged EEG signal and (B) 3D amplitude maps for the four spike networks in patient 6. The stars on the left of the electrode labels indicate that the corresponding averaged EEG signals at t 0 were statistically significant (Walsh’s test) (TIFF 2182 kb)

10548_2014_417_MOESM6_ESM.tif

Supplementary material 6 (A) Averaged EEG signal and (B) 3D amplitude maps for the four spike networks in patient 7. The stars on the left of the electrode labels indicate that the corresponding averaged EEG signals at t 0 were statistically significant (Walsh’s test). (TIFF 2309 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koessler, L., Cecchin, T., Colnat-Coulbois, S. et al. Catching the Invisible: Mesial Temporal Source Contribution to Simultaneous EEG and SEEG Recordings. Brain Topogr 28, 5–20 (2015). https://doi.org/10.1007/s10548-014-0417-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0417-z

Keywords

Navigation