Skip to main content

A Local Signature of LTP-Like Plasticity Induced by Repetitive Paired Associative Stimulation

Abstract

Repetitive paired associative stimulation (rPAS) repeatedly pairs electrical nerve stimulation (ENS) with transcranial magnetic stimulation (TMS) of the contralateral motor hand area (M1) at 5 Hz frequency. So far, there are only few studies concerning the effects of PAS on the modulation of EEG power. Hence, aim of the present study was to investigate rPAS long term after-effects on cortical excitability looking at EEG power spectra. In four experimental sessions, separated by 2 weeks interval, 12 awake subjects received rPAS of the right median nerve and left M1 at a fixed interval (ISI) of 25 ms (real condition), 5 Hz-TMS on left M1, 5 Hz-ENS, of the right median nerve, and rPAS with changing ISI (sham condition). We measured peak-to-peak MEP amplitude, evoked from the target muscle (right abductor pollicis brevis muscle) at rest and the absolute power (POW) in four frequency bands: α (8–12 Hz), β (13–30), θ (4–7) and δ (1–3), under rest conditions. All these parameters were evaluated in three detection blocks: baseline, immediately after and after 30′ from the end of the conditioning protocol. Real rPAS induced a long-lasting homotopic cortical excitability modulation, as indexed by MEP amplitude increase, that was paralleled by a long-lasting reduction of α/β-POW and by a widespread θ-δ-POW modulation. rPAS applied over the sensory-motor cortex induced an LTP-like plasticity, as indexed by a robust reduction in the α/β POW positively correlated with the MEP amplitude increase. rPAS25ms may be a useful tool for motor neurorehabilitation promoting a sensory-motor coupling within β oscillations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Allison JD, Meador KJ, Loring DW, Figueroa RE, Wright JC (2000) Functional MRI cerebral activation and deactivation during finger movement. Neurology 54:135–142

    Article  CAS  PubMed  Google Scholar 

  • Aumann TD, Fetz EE (2004) Oscillatory activity in forelimb muscles of behaving monkeys evoked by microstimulation in the cerebellar nuclei. Neurosci Lett 361:106–110

    Article  CAS  PubMed  Google Scholar 

  • Baker SN (2007) Oscillatory interactions between sensorimotor cortex and the periphery. Curr Opin Neurobiol 17:649–655

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bestmann S, Baudewig J, Siebner HR, Rothwell JC, Frahm J (2004) Functional MRI of the immediate impact of transcranial magnetic stimulation on cortical and subcortical motor circuits. Eur J Neurosci 19:1950–1962

    Article  PubMed  Google Scholar 

  • Brovelli A, Ding M, Ledberg A, Chen Y, Nakamura R, Bressler SL (2004) Β oscillations in a large-scale sensorimotor cortical network: directional influences revealed by Granger causality. Proc Natl Acad Sci USA 101:9849–9854

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Calderone DJ, Lakatos P, Butler PD, Castellanos FX (2014) Entrainment of neural oscillations as a modifiable substrate of attention. Trends Cogn Sci. doi:10.1016/j.tics.2014.02.005

    PubMed Central  PubMed  Google Scholar 

  • Castro-Alamancos MA (2000) Origin of synchronized oscillations induced by neocortical disinhibition in vivo. J Neurosci 20:9195–9206

    CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA, Rigas P (2002) Synchronized oscillations caused by disinhibition in rodent neocortex are generated by recurrent synaptic activity mediated by AMPA receptors. J Physiol 542:567–581

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Castro-Alamancos MA, Rigas P, Tawara-Hirata Y (2007) Resonance (∼10 Hz) of excitatory networks in motor cortex: effects of voltage-dependent ion channel blockers. J Physiol 578:173–191

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conforto AB, Kaelin-Lang A, Cohen LG (2002) Increase in hand muscle strength of stroke patients after somatosensory stimulation. Ann Neurol 51:122–125

    Article  PubMed  Google Scholar 

  • Dan Y, Poo MM (2004) Spike timing-dependent plasticity of neural circuits. Neuron 44:23–30

    Article  CAS  PubMed  Google Scholar 

  • Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Saturno E, Pilato F, Insola A, Mazzone P, Tonali P, Rothwell JC (1998) Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalogr Clin Neurophysiol 109:397–401

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Profice P, Pennisi MA, Di Giovanni S, Zito G, Tonali P, Rothwell JC (2000) Muscarinic receptor blockade has differential effects on the excitability of intracortical circuits in the human motor cortex. Exp Brain Res 135:455–461

    Article  PubMed  Google Scholar 

  • Di Lazzaro V, Oliviero A, Saturno E, Dileone M, Pilato F, Nardone R, Ranieri F, Musumeci G, Fiorilla T, Tonali P (2005) Effects of lorazepam on short latency afferent inhibition and short latency intracortical inhibition in humans. J Physiol 564:661–668

    Article  PubMed Central  PubMed  Google Scholar 

  • Ferbert A, Priori A, Rothwell JC, Day BL, Colebatch JG, Marsden CD (1992) Interhemispheric inhibition of the human motor cortex. J Physiol 453:525–546

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Froemke RC, Letzkus JJ, Kampa BM, Hang GB, Stuart GJ (2010) Dendritic synapse location and neocortical spike-timing-dependent plasticity. Front Synaptic Neurosci 2:29

    PubMed Central  PubMed  Google Scholar 

  • Fuggetta G, Noh NA (2013) A neurophysiological insight into the potential link between transcranial magnetic stimulation, thalamocortical dysrhythmia and neuropsychiatric disorders. Exp Neurol 245:87–95

    Article  PubMed  Google Scholar 

  • Fuggetta G, Fiaschi A, Manganotti P (2005) Modulation of cortical oscillatory activities induced by varying single-pulse transcranial magnetic stimulation intensity over the left primary motor area: a combined EEG and TMS study. Neuroimage 27:896–908

    Article  PubMed  Google Scholar 

  • Fuggetta G, Pavone EF, Fiaschi A, Manganotti P (2008) Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Hum Brain Mapp 29:1–13

    Article  PubMed  Google Scholar 

  • George MS, Nahas Z, Kozel FA, Li X, Denslow S, Yamanaka K, Mishory A, Foust MJ, Bohning DE (2002) Mechanisms and state of the art of transcranial magnetic stimulation. J ECT 18:170–181

    Article  PubMed  Google Scholar 

  • Golaszewski SM, Siedentopf CM, Koppelstaetter F, Rhomberg P, Guendisch GM, Schlager A, Gallasch E, Eisner W, Felber SR, Mottaghy FM (2004) Modulatory effects on human sensorimotor cortex by whole-hand afferent electrical stimulation. Neurology 62:2262–2269

    Article  CAS  PubMed  Google Scholar 

  • Griskova I, Ruksenas O, Dapsys K, Herpertz S, Höppner J (2007) The effects of 10 Hz repetitive transcranial magnetic stimulation on resting EEG power spectrum in healthy subjects. Neurosci Lett 419:162–167

    Article  CAS  PubMed  Google Scholar 

  • Groppa S, Muthuraman M, Otto B, Deuschl G, Siebner HR, Raethjen J (2013) Subcortical substrates of TMS induced modulation of the cortico-cortical connectivity. Brain Stimul 6:138–146

    Article  PubMed  Google Scholar 

  • Huber R, Määttä S, Esser SK, Sarasso S, Ferrarelli F, Watson A, Ferreri F, Peterson MJ, Tononi G (2008) Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci 28:7911–7918

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jenkinson N, Brown P (2011) New insights into the relationship between dopamine, β oscillations and motor function. Trends Neurosci 34:611–618

    Article  CAS  PubMed  Google Scholar 

  • Kaelin-Lang A, Luft AR, Sawaki L, Burstein AH, Sohn YH, Cohen LG (2002) Modulation of human corticomotor excitability by somatosensory input. J Physiol 540:623–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kilner JM, Fisher RJ, Lemon RN (2004) Coupling of oscillatory activity between muscles is strikingly reduced in a deafferented subject compared with normal controls. J Neurophysiol 92:790–796

    Article  CAS  PubMed  Google Scholar 

  • Klimesch W, Sauseng P, Gerloff C (2003) Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci 17:1129–1133

    Article  PubMed  Google Scholar 

  • Mäki H, Ilmoniemi RJ (2010) EEG oscillations and magnetically evoked motor potentials reflect motor system excitability in overlapping neuronal populations. Clin Neurophysiol 121:492–501

    Article  PubMed  Google Scholar 

  • Manganotti P, Formaggio E, Storti SF, De Massari D, Zamboni A, Bertoldo A, Fiaschi A, Toffolo GM (2012) Time-frequency analysis of short-lasting modulation of EEG induced by intracortical and transcallosal paired TMS over motor areas. J Neurophysiol 107:2475–2484

    Article  PubMed  Google Scholar 

  • Marsden JF, Ashby P, Limousin-Dowsey P, Rothwell JC, Brown P (2000) Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions. Brain 123:1459–1470

    Article  PubMed  Google Scholar 

  • McKay D, Brooker R, Giacomin P, Ridding M, Miles T (2002) Time course of induction of increased human motor cortex excitability by nerve stimulation. Neuroreport 13:1271–1273

    Article  PubMed  Google Scholar 

  • Meunier S, Russmann H, Simonetta-Moreau M, Hallett M (2007) Changes in spinal excitability after PAS. J Neurophysiol 97:3131–3135

    Article  PubMed  Google Scholar 

  • Miniussi C, Thut G (2010) Combining TMS and EEG offers new prospects in cognitive neuroscience. Brain Topogr 22:249–256

    Article  PubMed  Google Scholar 

  • Ohara S, Mima T, Baba K, Ikeda A, Kunieda T, Matsumoto R, Yamamoto J, Matsuhashi M, Nagamine T, Hirasawa K, Hori T, Mihara T, Hashimoto N, Salenius S, Shibasaki H (2001) Increased synchronization of cortical oscillatory activities between human supplementary motor and primary sensorimotor areas during voluntary movements. J Neurosci 21:9377–9386

    CAS  PubMed  Google Scholar 

  • Okamura H, Jing H, Takigawa M (2001) EEG modification induced by repetitive transcranial magnetic stimulation. J Clin Neurophysiol 18:318–325

    Article  CAS  PubMed  Google Scholar 

  • Paradiso G, Cunic D, Saint-Cyr JA, Hoque T, Lozano AM, Lang AE, Chen R (2004) Involvement of human thalamus in the preparation of self-paced movement. Brain 127:2717–2731

    Article  PubMed  Google Scholar 

  • Paus T, Sipila PK, Strafella AP (2001) Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol 86:1983–1990

    CAS  PubMed  Google Scholar 

  • Pfurtscheller G, da Lopes Silva FH (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110:1842–1857

    Article  CAS  PubMed  Google Scholar 

  • Pons TP, Kaas JH (1985) Connections of area 2 of somatosensory cortex with the anterior pulvinar and subdivisions of the ventroposterior complex in macaque monkeys. J Comp Neurol 240:16–36

    Article  CAS  PubMed  Google Scholar 

  • Pyndt HS, Ridding MC (2004) Modification of the human motor cortex by associative stimulation. Exp Brain Res 159:123–128

    CAS  PubMed  Google Scholar 

  • Quartarone A, Bagnato S, Rizzo V, Morgante F, Sant’angelo A, Battaglia F, Messina C, Siebner HR, Girlanda P (2005) Distinct changes in cortical and spinal excitability following high-frequency repetitive TMS to the human motor cortex. Exp Brain Res 161:114–124

    Article  PubMed  Google Scholar 

  • Quartarone A, Rizzo V, Bagnato S, Morgante F, Sant’Angelo A, Girlanda P, Siebner HR (2006) Rapid-rate paired associative stimulation of the median nerve and motor cortex can produce long-lasting changes in motor cortical excitability in humans. J Physiol 575:657–670

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ridding MC, Uy J (2003) Changes in motor cortical excitability induced by paired associative stimulation. Clin Neurophysiol 114:1437–1444

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, Brouwer B, Miles TS, Pitcher JB, Thompson PD (2000) Changes in muscle responses to stimulation of the motor cortex induced by peripheral nerve stimulation in human subjects. Exp Brain Res 131:135–143

    Article  CAS  PubMed  Google Scholar 

  • Ridding MC, McKay DR, Thompson PD, Miles TS (2001) Changes in corticomotor representations induced by prolonged peripheral nerve stimulation in humans. Clin Neurophysiol 112:1461–1469

    Article  CAS  PubMed  Google Scholar 

  • Rossini PM, Barker AT, Berardelli A, Caramia MD, Caruso G, Cracco RQ, Dimitrijević MR, Hallett M, Katayama Y, Lücking CH, de Maertens Noordhout AL, Marsden CD, Murray NMF, Rothwell JC, Swash M, Tomberg C (1994) Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application. report of an IFCN committee. Electroencephalogr Clin Neurophysiol 91:79–92

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC (1997) Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. J Neurosci Methods 74:113–122

    Article  CAS  PubMed  Google Scholar 

  • Rothwell JC (2011) Using transcranial magnetic stimulation methods to probe connectivity between motor areas of the brain. Hum Mov Sci 30:906–915

    Article  PubMed  Google Scholar 

  • Salenius S, Portin K, Kajola M, Salmelin R, Hari R (1997) Cortical control of human motoneuron firing during isometric contraction. J Neurophysiol 77:3401–3405

    CAS  PubMed  Google Scholar 

  • Sannita WG (2000) Stimulus-specific oscillatory responses of the brain: a time/frequency-related coding process. Clin Neurophysiol 111:565–583

    Article  CAS  PubMed  Google Scholar 

  • Siebner HR, Ziemann U (2010) Rippling the cortex with high-frequency (>100 Hz) alternating current stimulation. J Physiol 588:4851–4852

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva LR, Amitai Y, Connors BW (1992) Intrinsic oscillations of neocortex generated by layer 5 pyramidal neurons. Science 251:432–435

    Article  Google Scholar 

  • Sjöström PJ, Rancz EA, Roth A, Häusser M (2008) Dendritic excitability and synaptic plasticity. Physiol Rev 88:769–840

    Article  PubMed  Google Scholar 

  • Soteropoulos DS, Baker SN (2006) Cortico-cerebellar coherence during a precision grip task in the monkey. J Neurophysiol 95:1194–1206

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Cohen LG, Benecke R, Classen J (2000) Induction of plasticity in the human motor cortex by paired associative stimulation. Brain 123:572–584

    Article  PubMed  Google Scholar 

  • Stefan K, Kunesch E, Benecke R, Cohen LG, Classen J (2002) Mechanisms of enhancement of human motor cortex excitability induced by interventional paired associative stimulation. J Physiol 543:699–708

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Takano B, Drzezga A, Peller M, Sax I, Schwaiger M, Lee L, Siebner HR (2004) Short-term modulation of regional excitability and blood flow in human motor cortex following rapid-rate transcranial magnetic stimulation. Neuroimage 23:849–859

    Article  PubMed  Google Scholar 

  • Tegenthoff M, Ragert P, Pleger B, Schwenkreis P, Förster AF, Nicolas V, Dinse HR (2005) Improvement of tactile discrimination performance and enlargement of cortical somatosensory maps after 5 Hz rTMS. PLoS Biol 3:e362

    Article  PubMed Central  PubMed  Google Scholar 

  • Thut G, Pascual-Leone A (2010) A review of combined TMS-EEG studies to characterize lasting effects of repetitive TMS and assess their usefulness in cognitive and clinical neuroscience. Brain Topogr 22:219–232

    Article  PubMed Central  PubMed  Google Scholar 

  • Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J (2011) Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol 21:1176–1185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • van Ede F, Maris E (2013) Somatosensory demands modulate muscular Β oscillations, Independent of motor demands. J Neurosci 33:10849–10857

    Article  PubMed  Google Scholar 

  • Vazquez J, Baghdoyan HA (2003) Muscarinic and GABAA receptors modulate acetylcholine release in feline basal forebrain. Eur J Neurosci 17:249–259

    Article  PubMed  Google Scholar 

  • Veniero D, Brignani D, Thut G, Miniussi C (2011) α-generation as basic response-signature to transcranial magnetic stimulation (TMS) targeting the human resting motor cortex: a TMS/EEG co-registration study. Psychophysiol 48:1381–1389

    Article  Google Scholar 

  • Witham CL, Baker SN (2007) Network oscillations and intrinsic spiking rhythmicity do not covary in monkey sensorimotor areas. J Physiol 580:801–814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wolters A, Sandbrink F, Schlottmann A, Kunesch E, Stefan K, Cohen LG, Benecke R, Classen J (2003) A temporally asymmetric Hebbian rule governing plasticity in the human motor cortex. J Neurophysiol 89:2339–2345

    Article  PubMed  Google Scholar 

  • Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, Benecke R, Reiners K, Classen J (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol 565:1039–1052

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu CW, van Gelderen P, Hanakawa T, Yaseen Z, Cohen LG (2005) Enduring representational plasticity after somatosensory stimulation. Neuroimage 27:872–884

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Naro.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Naro, A., Russo, M., AbdelKader, M. et al. A Local Signature of LTP-Like Plasticity Induced by Repetitive Paired Associative Stimulation. Brain Topogr 28, 238–249 (2015). https://doi.org/10.1007/s10548-014-0396-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0396-0

Keywords

  • Repetitive paired associative stimulation
  • Oscillatory activity
  • EEG power modulation
  • Long term potentiation
  • Associative plasticity