Abstract
Macroscopic brain networks have been widely described with the manifold of metrics available using graph theory. However, most analyses do not incorporate information about the physical position of network nodes. Here, we provide a multimodal macroscopic network characterization while considering the physical positions of nodes. To do so, we examined anatomical and functional macroscopic brain networks in a sample of twenty healthy subjects. Anatomical networks are obtained with a graph based tractography algorithm from diffusion-weighted magnetic resonance images (DW-MRI). Anatomical connections identified via DW-MRI provided probabilistic constraints for determining the connectedness of 90 different brain areas. Functional networks are derived from temporal linear correlations between blood-oxygenation level-dependent signals derived from the same brain areas. Rentian Scaling analysis, a technique adapted from very-large-scale integration circuits analyses, shows that functional networks are more random and less optimized than the anatomical networks. We also provide a new metric that allows quantifying the global connectivity arrangements for both structural and functional networks. While the functional networks show a higher contribution of inter-hemispheric connections, the anatomical networks highest connections are identified in a dorsal–ventral arrangement. These results indicate that anatomical and functional networks present different connectivity organizations that can only be identified when the physical locations of the nodes are included in the analysis.
This is a preview of subscription content, access via your institution.



Abbreviations
- FC:
-
Functional connectivity
- AC:
-
Anatomical connectivity
- MRI:
-
Magnetic resonance imaging
- DW-MRI:
-
Diffusion weighted magnetic resonance imaging
- BOLD:
-
Blood-oxygenation level-dependent
- fMRI:
-
Functional magnetic resonance imaging
- rsfMRI:
-
Resting state functional magnetic resonance imaging
- TR:
-
Repetition time
- TE:
-
Echo time
- FoV:
-
Field of view
- GM:
-
Grey matter
- CSF:
-
Cerebrospinal fluid
- WM:
-
White matter
- ACP:
-
Anatomical connection probability
- tRS:
-
Topological rentian scaling
- pRS:
-
Physical rentian scaling
- mRS:
-
Minimum rentian scaling
- rtRE:
-
Random topological rentian scaling
- rpRE:
-
Random physical rentian scaling
- IH:
-
Inter-hemispheric
- AP:
-
Anterior–posterior
- DV:
-
Dorsal–ventral
- ROI:
-
Region of interest
- EEG:
-
Electroencephalography
- MEG:
-
Magnetoencephalography
References
Andrews-Hanna JR, Snyder AZ, Vincent JL et al (2007) Disruption of large-scale brain systems in advanced aging. Neuron 56:924–935. doi:10.1016/j.neuron.2007.10.038
Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113. doi:10.1016/j.neuroimage.2007.07.007
Bassett D, Bullmore E (2009) Human brain networks in health and disease. Curr Opin Neurol 22:340–347. doi:10.1097/WCO.0b013e32832d93dd.Human
Bassett DS, Greenfield DL, Meyer-Lindenberg A et al (2010) Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Comput Biol 6:e1000748. doi:10.1371/journal.pcbi.1000748
Boorman ED, O’Shea J, Sebastian C et al (2007) Individual differences in white-matter microstructure reflect variation in functional connectivity during choice. Curr Biol 17:1426–1431. doi:10.1016/j.cub.2007.07.040
Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–198. doi:10.1038/nrn2575
Bullmore E, Sporns O (2012) The economy of brain network organization. Nat Rev Neurosci 13:336–349. doi:10.1038/nrn3214
Camchong J, MacDonald AW, Bell C et al (2011) Altered functional and anatomical connectivity in schizophrenia. Schizophr Bull 37:640–650. doi:10.1093/schbul/sbp131
Chang C, Glover GH (2009) Effects of model-based physiological noise correction on default mode network anti-correlations and correlations. Neuroimage 47:1448–1459. doi:10.1016/j.neuroimage.2009.05.012
Christie P, Stroobandt D (2000) The interpretation and application of Rent’s rule. IEEE Trans Very Large Scale Integr Syst 8:639–648. doi:10.1109/92.902258
Cohen MX, Elger CE, Weber B (2008) Amygdala tractography predicts functional connectivity and learning during feedback-guided decision-making. Neuroimage 39:1396–1407. doi:10.1016/j.neuroimage.2007.10.004
Collin G, Sporns O, Mandl RCW, van den Heuvel MP (2013) Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cereb Cortex. doi:10.1093/cercor/bht064
Damoiseaux JS, Greicius MD (2009) Greater than the sum of its parts: a review of studies combining structural connectivity and resting-state functional connectivity. Brain Struct Funct 213:525–533. doi:10.1007/s00429-009-0208-6
Dijkstra EW (1959) A note on two problems in connexion with graphs. Numer Math 1:269–271. doi:10.1007/BF01386390
Dosenbach NUF, Nardos B, Cohen AL et al (2010) Prediction of individual brain maturity using fMRI. Science 329:1358–1361. doi:10.1126/science.1194144
Fair DA, Cohen AL, Dosenbach NUF, et al. (2008) The maturing architecture of the brain’s default network. Proc Natl Acad Sci USA 105:4028–32. doi: 10.1073/pnas.0800376105
Fornito A, Bullmore ET (2010) What can spontaneous fluctuations of the blood oxygenation-level-dependent signal tell us about psychiatric disorders? Curr Opin Psychiatry 23:239–249. doi:10.1097/YCO.0b013e328337d78d
Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3):524–536. doi:10.1093/cercor/bhn102
Greicius MD, Supekar K, Menon V, Dougherty RF (2009) Resting-state functional connectivity reflects structural connectivity in the default mode network. Cereb Cortex 19:72–78. doi:10.1093/cercor/bhn059
Guye M, Parker GJ, Symms M et al (2003) Combined functional MRI and tractography to demonstrate the connectivity of the human primary motor cortex in vivo. Neuroimage 19:1349–1360. doi:10.1016/S1053-8119(03)00165-4
Guye M, Bettus G, Bartolomei F, Cozzone PJ (2010) Graph theoretical analysis of structural and functional connectivity MRI in normal and pathological brain networks. MAGMA 23:409–421. doi:10.1007/s10334-010-0205-z
Hagmann P, Jonasson L, Maeder P, Thiran JP, Wedeen VJ, Meuli R (2006) Understanding diffusion MR imaging techniques: from scalar diffusion-weighted imaging to diffusion tensor imaging and beyond. Radiographics 26(Suppl 1):S205–S223
Hagmann P, Cammoun L, Gigandet X et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159. doi:10.1371/journal.pbio.0060159
Hermundstad AM, Bassett DS, Brown KS et al (2013) Structural foundations of resting-state and task-based functional connectivity in the human brain. Proc Natl Acad Sci USA 110:6169–6174. doi:10.1073/pnas.1219562110
Honey CJ, Kötter R, Breakspear M, Sporns O (2007) Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proc Natl Acad Sci USA 104:10240–10245. doi:10.1073/pnas.0701519104
Honey CJ, Sporns O, Cammoun L et al (2009) Predicting human resting-state functional connectivity. Proc Natl Acad Sci USA 106:2035–2040
Hosseini SMH, Kesler SR (2013) Comparing connectivity pattern and small-world organization between structural correlation and resting-state networks in healthy adults. Neuroimage 78C:402–414. doi:10.1016/j.neuroimage.2013.04.032
Iturria-Medina Y, Canales-Rodríguez EJ, Melie-García L et al (2007) Characterizing brain anatomical connections using diffusion weighted MRI and graph theory. Neuroimage 36:645–660. doi:10.1016/j.neuroimage.2007.02.012
Jbabdi S, Sotiropoulos SN, Behrens TE (2013) The topographic connectome. Curr Opin Neurobiol 23:207–215. doi:10.1016/j.conb.2012.12.004
Karypis G, Kumar V (1998) Multilevelk-way Partitioning Scheme for Irregular Graphs. J Parallel Distrib Comput 48:96–129. doi:10.1006/jpdc.1997.1404
Koch MA, Norris DG, Hund-Georgiadis M (2002) An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 16:241–50. doi: 10.1006/nimg.2001.1052
Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. Neuroimage 52:1059–1069. doi:10.1016/j.neuroimage.2009.10.003
Rykhlevskaia E, Gratton G, Fabiani M (2008) Combining structural and functional neuroimaging data for studying brain connectivity: a review. Psychophysiology 45:173–187. doi:10.1111/j.1469-8986.2007.00621.x
Singer W (1993) Synchronization of cortical activity and its putative role in information processing and learning. Annu Rev Physiol 55:349–374. doi:10.1146/annurev.ph.55.030193.002025
Skudlarski P, Jagannathan K, Calhoun VD et al (2008) Measuring brain connectivity: diffusion tensor imaging validates resting state temporal correlations. Neuroimage 43:554–561. doi:10.1016/j.neuroimage.2008.07.063
Skudlarski P, Jagannathan K, Anderson K et al (2010) Brain connectivity is not only lower but different in schizophrenia: a combined anatomical and functional approach. Biol Psychiatry 68:61–69. doi:10.1016/j.biopsych.2010.03.035
Smith SM (2002) Fast robust automated brain extraction. Hum Brain Mapp 17:143–155. doi:10.1002/hbm.10062
Sporns O (2011) The non-random brain: efficiency, economy, and complex dynamics. Front Comput Neurosci 5:5. doi:10.3389/fncom.2011.00005
Takahashi E, Ohki K, Kim D-S (2008) Dissociated pathways for successful memory retrieval from the human parietal cortex: anatomical and functional connectivity analyses. Cereb Cortex 18:1771–1778. doi:10.1093/cercor/bhm204
Teipel SJ, Bokde ALW, Meindl T et al (2010) White matter microstructure underlying default mode network connectivity in the human brain. Neuroimage 49:2021–2032. doi:10.1016/j.neuroimage.2009.10.067
Tournier J-D, Calamante F, Gadian DG, Connelly A (2004) Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution. Neuroimage 23:1176–1185. doi:10.1016/j.neuroimage.2004.07.037
Tuch DS (2004) Q-ball imaging. Magn Reson Med 52:1358–1372. doi:10.1002/mrm.20279
Tzourio-Mazoyer N, Landeau B, Papathanassiou D et al (2002) Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273–289. doi:10.1006/nimg.2001.0978
Van den Heuvel M, Mandl R, Luigjes J, Hulshoff Pol H (2008) Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J Neurosci 28:10844–10851. doi:10.1523/JNEUROSCI.2964-08.2008
Van den Heuvel MP, Mandl RCW, Kahn RS, Hulshoff Pol HE (2009) Functionally linked resting-state networks reflect the underlying structural connectivity architecture of the human brain. Hum Brain Mapp 30:3127–3141. doi:10.1002/hbm.20737
Verplaetse P, Dambre J, Stroobandt D, Van Campenhout J (2001) On Partitioning vs. Placement Rent Properties. Proc Intl Work Syst Interconnect Predict
Xia M, Wang J, He Y (2013) BrainNet viewer: a network visualization tool for human brain connectomics. PLoS One. doi:10.1371/journal.pone.0068910
Zhou Y, Shu N, Liu Y et al (2008) Altered resting-state functional connectivity and anatomical connectivity of hippocampus in schizophrenia. Schizophr Res 100:120–132. doi:10.1016/j.schres.2007.11.039
Acknowledgments
The authors are grateful to the research participants for their participation in this study. We also thank Yasser Iturria-Medina for providing the tractography scripts. We also thank Frank G. Hillary and Nazareth P. Castellanos for fruitful comments on the manuscript. José Á. Pineda-Pardo was supported by the Spanish Ministry of Education through the National Program FPU (grant number AP2010-1317).
Disclosure
No competing financial interests exist.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pineda-Pardo, J.Á., Martínez, K., Solana, A.B. et al. Disparate Connectivity for Structural and Functional Networks is Revealed When Physical Location of the Connected Nodes is Considered. Brain Topogr 28, 187–196 (2015). https://doi.org/10.1007/s10548-014-0393-3
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10548-014-0393-3