Brain Topography

, Volume 28, Issue 2, pp 197–207 | Cite as

Upregulation of the Rostral Anterior Cingulate Cortex can Alter the Perception of Emotions: fMRI-Based Neurofeedback at 3 and 7 T

  • M. Gröne
  • M. Dyck
  • Y. Koush
  • S. Bergert
  • K. A. Mathiak
  • E. M. Alawi
  • M. Elliott
  • K. Mathiak
Original Paper

Abstract

Recent advances in real-time functional magnetic resonance imaging (rt-fMRI) techniques enable online feedback about momentary brain activity from a localized region of interest. The anterior cingulate cortex (ACC) as a central hub for cognitive and emotional networks and its modulation has been suggested to elicit mood changes. In the presented real-time fMRI neurofeedback experiment at a 3 and a 7 T scanner we enabled participants to regulate ACC activity within one training session. The session consisted of three training runs of 8.5 min where subjects received online feedback about their current ACC activity. Before and after each run we presented emotional prosody. Subjects rated these stimuli according to their emotional valence and arousal, which served as an implicit mood measure. We found increases in ACC activation at 3 T (n = 15) and at 7 T (n = 9) with a higher activation success for the 3 T group. FMRI signal control of the rostral ACC depended on signal quality and predicted a valence bias in the rating of emotional prosody. Real-time fMRI neurofeedback of the ACC is feasible at different magnetic field strengths and can modulate localized ACC activity and emotion perception. It promises non-invasive therapeutic approaches for different psychiatric disorders characterized by impaired self-regulation.

Keywords

Real-time fMRI Neurofeedback Anterior cingulate cortex High field fMRI Prosody Emotions Valence Arousal 

Supplementary material

10548_2014_384_MOESM1_ESM.zip (221 kb)
Electronic supplementary material 1 (ZIP 221 kb)

References

  1. Andersson P, Pluim JP, Siero JC, Klein S, Viergever MA, Ramsey NF (2011) Real-time decoding of brain responses to visuospatial attention using 7 T fMRI. PLoS ONE 6(11):e27638CrossRefPubMedCentralPubMedGoogle Scholar
  2. Bradley MM, Lang PJ (1994) Measuring emotion: the Self-Assessment Manikin and the Semantic Differential. J Behav Ther Exp Psychiatry 25(1):49–59CrossRefPubMedGoogle Scholar
  3. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4(6):215–222CrossRefPubMedGoogle Scholar
  4. Bush G, Vogt BA, Holmes J, Dale AM, Greve D, Jenike MA, Rosen BR (2002) Dorsal anterior cingulate cortex: a role in reward-based decision making. Proc Natl Acad Sci USA 99(1):523–528CrossRefPubMedCentralPubMedGoogle Scholar
  5. Carter CS, van Veen V (2007) Anterior cingulate cortex and conflict detection: an update of theory and data. Cogn Affect Behav Neurosci 7(4):367–379CrossRefPubMedGoogle Scholar
  6. Chepenik LG, Cornew LA, Farah MJ (2007) The influence of sad mood on cognition. Emotion 7(4):802–811CrossRefPubMedGoogle Scholar
  7. Collins DL, Neelin P, Peters TM, Evans AC (1994) Automatic 3D intersubject registration of MR volumetric data in standardized Talairach space. J Comput Assist Tomogr 18(2):192–205CrossRefPubMedGoogle Scholar
  8. de Zwart JA, van Gelderen P, Kellman P, Duyn JH (2002) Reduction of gradient acoustic noise in MRI using SENSE-EPI. Neuroimage 16(4):1151–1155CrossRefPubMedGoogle Scholar
  9. deCharms RC, Christoff K, Glover GH, Pauly JM, Whitfield S, Gabrieli JD (2004) Learned regulation of spatially localized brain activation using real-time fMRI. Neuroimage 21(1):436–443CrossRefPubMedGoogle Scholar
  10. deCharms RC, Maeda F, Glover GH, Ludlow D, Pauly JM, Soneji D, Gabrieli JD, Mackey SC (2005) Control over brain activation and pain learned by using real-time functional MRI. Proc Natl Acad Sci USA 102(51):18626–18631CrossRefPubMedCentralPubMedGoogle Scholar
  11. Duyn JH (2012) The future of ultra-high field MRI and fMRI for study of the human brain. Neuroimage 62(2):1241–1248CrossRefPubMedCentralPubMedGoogle Scholar
  12. Eickhoff SB, Stephan KE, Mohlberg H, Grefkes C, Fink GR, Amunts K, Zilles K (2005) A new SPM toolbox for combining probabilistic cytoarchitectonic maps and functional imaging data. Neuroimage 25(4):1325–1335CrossRefPubMedGoogle Scholar
  13. Friederici AD, Alter K (2004) Lateralization of auditory language functions: a dynamic dual pathway model. Brain Lang 89(2):267–276CrossRefPubMedGoogle Scholar
  14. Gasquoine PG (2013) Localization of function in anterior cingulate cortex: from psychosurgery to functional neuroimaging. Neurosci Biobehav Rev 37(3):340–348CrossRefPubMedGoogle Scholar
  15. Hamilton JP, Glover GH, Hsu JJ, Johnson RF, Gotlib IH (2011) Modulation of subgenual anterior cingulate cortex activity with real-time neurofeedback. Hum Brain Mapp 32(1):22–31CrossRefPubMedCentralPubMedGoogle Scholar
  16. Hutton C, Josephs O, Stadler J, Featherstone E, Reid A, Speck O, Bernarding J, Weiskopf N (2011) The impact of physiological noise correction on fMRI at 7 T. Neuroimage 57(1):101–112CrossRefPubMedCentralPubMedGoogle Scholar
  17. Hyde JS, Biswal BB, Jesmanowicz A (2001) High-resolution fMRI using multislice partial k-space GR-EPI with cubic voxels. Magn Reson Med 46(1):114–125CrossRefPubMedGoogle Scholar
  18. Johnston S, Linden DE, Healy D, Goebel R, Habes I, Boehm SG (2011) Upregulation of emotion areas through neurofeedback with a focus on positive mood. Cogn Affect Behav Neurosci 11(1):44–51CrossRefPubMedGoogle Scholar
  19. Kanfer FH, Saslow G (1965) Behavioural analysis: an alternative to diagnostic classification. Arch Gen Psychiatry 12:529–538CrossRefPubMedGoogle Scholar
  20. Konarski JZ, Kennedy SH, Segal ZV, Lau MA, Bieling PJ, McIntyre RS, Mayberg HS (2009) Predictors of nonresponse to cognitive behavioural therapy or venlafaxine using glucose metabolism in major depressive disorder. J Psychiatry Neurosci 34(3):175–180PubMedCentralPubMedGoogle Scholar
  21. Kotz SA, Meyer M, Alter K, Besson M, von Cramon DY, Friederici AD (2003) On the lateralization of emotional prosody: an event-related functional MR investigation. Brain Lang 86(3):366–376CrossRefPubMedGoogle Scholar
  22. Koush Y, Elliott MA, Mathiak K (2011) Single voxel proton spectroscopy for neurofeedback at 7 Tesla. Materials 4:1548–1563 (Correction: Materials 4:2057–2060)Google Scholar
  23. Koush Y, Zvyagintsev M, Dyck M, Mathiak KA, Mathiak K (2012) Signal quality and Bayesian signal processing in neurofeedback based on real-time fMRI. Neuroimage 9(1):478–489CrossRefGoogle Scholar
  24. Koush Y, Elliott MA, Scharnowski F, Mathiak K (2013) Real-time automated spectral assessment of the BOLD response for neurofeedback at 3 and 7 T. J Neurosci Methods 218(2):148–160CrossRefPubMedGoogle Scholar
  25. Krüger G, Glover GH (2001) Physiological noise in oxygenation-sensitive magnetic resonance imaging. Magn Reson Med 46(4):631–637CrossRefPubMedGoogle Scholar
  26. Kwong KK, Belliveau JW, Chesler DA, Goldberg IE, Weisskoff RM, Poncelet BP, Kennedy DN, Hoppel BE, Cohen MS, Turner R, Cheng H-M, Brady TJ, Rosen BR (1992) Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proc Natl Acad Sci USA 89:5675–5679CrossRefPubMedCentralPubMedGoogle Scholar
  27. Linden DE (2014) Neurofeedback and networks of depression. Dialogues Clin Neurosci. 16(1):103–112PubMedCentralPubMedGoogle Scholar
  28. Linden DE, Habes I, Johnston SJ, Linden S, Tatineni R, Subramanian L, Sorger B, Healy D, Goebel R (2012) Real-time self-regulation of emotion networks in patients with depression. PLoS ONE 7(6):e38115CrossRefPubMedCentralPubMedGoogle Scholar
  29. Marshall AD, Sippel LM, Belleau EL (2011) Negatively biased emotion perception in depression as a contributing factor to psychological aggression perpetration: a preliminary study. J Psychol 145(6):521–535CrossRefPubMedCentralPubMedGoogle Scholar
  30. Mathiak K, Posse S (2001) Evaluation of motion and realignment for functional magnetic resonance imaging in real time. Magn Reson Med 45(1):167–171CrossRefPubMedGoogle Scholar
  31. Mathiak KA, Koush Y, Dyck M, Gaber TJ, Alawi E, Zepf FD, Zvyagintsev M, Mathiak K (2010) Social reinforcement can regulate localized brain activity. Eur Arch Psychiatry Clin Neurosci 260(Suppl 2):S132–S136CrossRefPubMedGoogle Scholar
  32. Mathiak KA, Zvyagintsev M, Ackermann H, Mathiak K (2012) Lateralization of amygdala activation in fMRI may depend on phase-encoding polarity. Magn Reson Mater Phy 25(3):177–182CrossRefGoogle Scholar
  33. Mayberg HS (2009) Targeted electrode-based modulation of neural circuits for depression. J Clin Investig 119(4):717–725CrossRefPubMedCentralPubMedGoogle Scholar
  34. Mikl M, Marecek R, Hlustík P, Pavlicová M, Drastich A, Chlebus P, Brázdil M, Krupa P (2008) Effects of spatial smoothing on fMRI group inferences. Magn Reson Imaging 26(4):490–503CrossRefPubMedGoogle Scholar
  35. Mohanty A, Engels AS, Herrington JD, Heller W, Ho MH, Banich MT, Webb AG, Warren SL, Miller GA (2007) Differential engagement of anterior cingulate cortex subdivisions for cognitive and emotional function. Psychophysiology 44(3):343–351CrossRefPubMedGoogle Scholar
  36. Niendam TA, Laird AR, Ray KL, Dean YM, Glahn DC, Carter CS (2012) Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive functions. Cognit Affect Behav Neurosci 12(2):241–268CrossRefGoogle Scholar
  37. Ogawa S, Lee TM, Kay AR, Tank DW (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87(24):9868–9872CrossRefPubMedCentralPubMedGoogle Scholar
  38. Phan KL, Wager T, Taylor SF, Liberzon I (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16(2):331–348CrossRefPubMedGoogle Scholar
  39. Rota G, Sitaram R, Veit R, Erb M, Weiskopf N, Dogil G, Birbaumer N (2009) Self-regulation of regional cortical activity using real-time fMRI: the right inferior frontal gyrus and linguistic processing. Hum Brain Mapp 30(5):1605–1614CrossRefPubMedGoogle Scholar
  40. Scharnowski F, Hutton C, Josephs O, Weiskopf N, Rees G (2012) Improving visual perception through neurofeedback. J Neurosci 32(49):17830–17841CrossRefPubMedCentralPubMedGoogle Scholar
  41. Schneider F, Backes V, Mathiak K (2009) Brain imaging: on the way toward a therapeutic discipline. Eur Arch Psychiatry Clin Neurosci 259(Suppl 2):S143–S147CrossRefPubMedGoogle Scholar
  42. Sitaram R, Caria A, Veit R, Gaber T, Rota G, Kuebler A, Birbaumer N (2007) FMRI brain-computer interface: a tool for neuroscientific research and treatment. Comput Intell Neurosci 2007:25487PubMedCentralGoogle Scholar
  43. Skinner BF (1938) The behavior of organisms: an experimental analysis. Appleton-Century, OxfordGoogle Scholar
  44. Sladky R, Baldinger P, Kranz GS, Tröstl J, Höflich A, Lanzenberger R, Moser E, Windischberger C (2011) High-resolution functional MRI of the human amygdala at 7 T. Eur J Radiol 82(5):728–733CrossRefPubMedGoogle Scholar
  45. Stöcker T, Schneider F, Klein M, Habel U, Kellermann T, Zilles K, Shah NJ (2005) Automated quality assurance routines for fMRI data applied to a multicenter study. Hum Brain Mapp 25(2):237–246CrossRefPubMedGoogle Scholar
  46. Sulzer J, Haller S, Scharnowski F, Weiskopf N, Birbaumer N, Blefari ML, Bruehl AB, Cohen LG, DeCharms RC, Gassert R, Goebel R, Herwig U, LaConte S, Linden D, Luft A, Seifritz E, Sitaram R (2013) Real-time fMRI neurofeedback: progress and challenges. Neuroimage. 76:386–399CrossRefPubMedGoogle Scholar
  47. Thönnessen H, Boers F, Dammers J, Chen YH, Norra C, Mathiak K (2010) Early sensory encoding of affective prosody: neuromagnetic tomography of emotional category changes. Neuroimage 50(1):250–259CrossRefPubMedGoogle Scholar
  48. Triantafyllou C, Hoge RD, Krueger G, Wiggins CJ, Potthast A, Wiggins GC, Wald LL (2005) Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26(1):243–250CrossRefPubMedGoogle Scholar
  49. Uludağ K, Müller-Bierl B, Uğurbil K (2009) An integrative model for neuronal activity-induced signal changes for gradient and spin echo functional imaging. Neuroimage 48(1):150–165CrossRefPubMedGoogle Scholar
  50. van der Zwaag W, Francis S, Head K, Peters A, Gowland P, Morris P, Bowtell R (2009) fMRI at 1.5, 3 and 7 T: characterising BOLD signal changes. Neuroimage 47(4):1425–1434CrossRefPubMedGoogle Scholar
  51. Walter M, Stadler J, Tempelmann C, Speck O, Northoff G (2008) High resolution fMRI of subcortical regions during visual erotic stimulation at 7 T. Magn Reson Mater Phys 21(1–2):103–111CrossRefGoogle Scholar
  52. Watson D, Clark LA, Tellegen A (1988) Development and validation of brief measures of positive and negative affect: the PANAS scales. J Pers Soc Psychol 54(6):1063–1070CrossRefPubMedGoogle Scholar
  53. Weiskopf N (2012) Real-time fMRI and its application to neurofeedback. Neuroimage 62(2):682–692CrossRefPubMedGoogle Scholar
  54. Weiskopf N, Veit R, Erb M, Mathiak K, Grodd W, Goebel R, Birbaumer N (2003) Physiological self-regulation of regional brain activity using real-time functional magnetic resonance imaging (fMRI): methodology and exemplary data. Neuroimage 19(3):577–586CrossRefPubMedGoogle Scholar
  55. Weiskopf N, Mathiak K, Bock SW, Scharnowski F, Veit R, Grodd W, Goebel R, Birbaumer N (2004) Principles of a brain-computer interface (BCI) based on real-time functional magnetic resonance imaging (fMRI). IEEE Trans Biomed Eng 51(6):966–970CrossRefPubMedGoogle Scholar
  56. Weiskopf N, Sitaram R, Josephs O, Veit R, Scharnowski F, Goebel R, Birbaumer N, Deichmann R, Mathiak K (2007) Real-time functional magnetic resonance imaging: methods and applications. Magn Reson Imaging 25(6):989–1003CrossRefPubMedGoogle Scholar
  57. Weissman DH, Gopalakrishnan A, Hazlett CJ, Woldorff MG (2005) Dorsal anterior cingulate cortex resolves conflict from distracting stimuli by boosting attention toward relevant events. Cereb Cortex 15(2):229–237CrossRefPubMedGoogle Scholar
  58. Wittchen H-U, Wunderlich U, Gruschwitz S, Zaudig M (1997) Strukturiertes klinisches Interview für DSM-IV, Achse-I (SKID). Hogrefe, GöttingenGoogle Scholar
  59. Yacoub E, Harel N, Ugurbil K (2008) High-field fMRI unveils orientation columns in humans. Proc Natl Acad Sci USA 105(30):10607–10612CrossRefPubMedCentralPubMedGoogle Scholar
  60. Zvyagintsev M, Clemens B, Chechko N, Mathiak KA, Sack AT, Mathiak K (2013) Brain networks underlying mental imagery of auditory and visual information. Eur J Neurosci 37(9):1421–1434CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • M. Gröne
    • 1
    • 2
    • 8
  • M. Dyck
    • 1
  • Y. Koush
    • 3
    • 4
  • S. Bergert
    • 1
  • K. A. Mathiak
    • 1
    • 5
  • E. M. Alawi
    • 1
    • 2
  • M. Elliott
    • 6
  • K. Mathiak
    • 1
    • 2
    • 7
  1. 1.Department of Psychiatry, Psychotherapy and PsychosomaticsRWTH Aachen UniversityAachenGermany
  2. 2.Interdisciplinary Centre for Clinical Research, Medical SchoolRWTH Aachen UniversityAachenGermany
  3. 3.Department of Radiology and Medical Informatics CIBMUniversity of GenevaGenevaSwitzerland
  4. 4.Institute of BioengineeringÉcole Polytechnique Fédérale de LausanneLausanneSwitzerland
  5. 5.Department of Child and Adolescent Psychiatry, Psychosomatics and PsychotherapyRWTH Aachen UniversityAachenGermany
  6. 6.Department of RadiologyUniversity of PennsylvaniaPhiladelphiaUSA
  7. 7.Jülich-Aachen Research Alliance (JARA)-Translational Brain Medicine, JülichAachenGermany
  8. 8.Department of Psychiatry, Psychotherapy and Psychosomatics, Medical SchoolRWTH Aachen UniversityAachenGermany

Personalised recommendations