Skip to main content
Log in

A New and Fast Characterization of Multiple Encoding Properties of Auditory Neurons

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The functional properties of auditory cortex neurons are most often investigated separately, through spectrotemporal receptive fields (STRFs) for the frequency tuning and the use of frequency sweeps sounds for selectivity to velocity and direction. In fact, auditory neurons are sensitive to a multidimensional space of acoustic parameters where spectral, temporal and spatial dimensions interact. We designed a multi-parameter stimulus, the random double sweep (RDS), composed of two uncorrelated random sweeps, which gives an easy, fast and simultaneous access to frequency tuning as well as frequency modulation sweep direction and velocity selectivity, frequency interactions and temporal properties of neurons. Reverse correlation techniques applied to recordings from the primary auditory cortex of guinea pigs and rats in response to RDS stimulation revealed the variety of temporal dynamics of acoustic patterns evoking an enhanced or suppressed firing rate. Group results on these two species revealed less frequent suppression areas in frequency tuning STRFs, the absence of downward sweep selectivity, and lower phase locking abilities in the auditory cortex of rats compared to guinea pigs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
€32.70 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Finland)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Aertsen AM, Johannesma PI (1981) The spectro-temporal receptive field. A functional characteristic of auditory neurons. Biol Cybern 42:133–143

    Article  CAS  PubMed  Google Scholar 

  • Aertsen AMHJ, Johannesma PIM, Hermes DJ (1980) Spectro-temporal receptive fields of auditory neurons in the grassfrog. II. Analysis of the stimulus-event relation for tonal stimuli. Biol Cybernetics 38:235–248. doi:10.1007/BF00337016

    Article  Google Scholar 

  • Aertsen AM, Olders JH, Johannesma PI (1981) Spectro-temporal receptive fields of auditory neurons in the grassfrog. III. Analysis of the stimulus-event relation for natural stimuli. Biol Cybern 39:195–209

    Article  CAS  PubMed  Google Scholar 

  • Ahrens MB, Linden JF, Sahani M (2008) Nonlinearities and contextual influences in auditory cortical responses modeled with multilinear spectrotemporal methods. J Neurosci 28:1929–1942

    Article  CAS  PubMed  Google Scholar 

  • Atencio CA, Blake DT, Strata F et al (2007) Frequency-modulation encoding in the primary auditory cortex of the awake owl monkey. J Neurophysiol 98:2182–2195

    Article  PubMed  Google Scholar 

  • Barbour DL, Wang X (2003) Contrast tuning in auditory cortex. Science 299:1073–1075. doi:10.1126/science.1080425

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Blake DT, Merzenich MM (2002) Changes of AI receptive fields with sound density. J Neurophysiol 88:3409–3420. doi:10.1152/jn.00233.2002

    Article  PubMed  Google Scholar 

  • Brosch M, Schreiner CE (1997) Time course of forward masking tuning curves in cat primary auditory cortex. J Neurophysiol 77:923–943

    CAS  PubMed  Google Scholar 

  • Brosch M, Schreiner CE (2000) Sequence sensitivity of neurons in cat primary auditory cortex. Cereb Cortex 10:1155–1167

    Article  CAS  PubMed  Google Scholar 

  • Brosch M, Schulz A, Scheich H (1999) Processing of sound sequences in macaque auditory cortex: response enhancement. J Neurophysiol 82:1542–1559

    CAS  PubMed  Google Scholar 

  • Carruthers IM, Natan RG, Geffen MN (2013) Encoding of ultrasonic vocalizations in the auditory cortex. J Neurophysiol 109:1912–1927. doi:10.1152/jn.00483.2012

    Article  PubMed Central  PubMed  Google Scholar 

  • Christianson GB, Sahani M, Linden JF (2008) The consequences of response nonlinearities for interpretation of spectrotemporal receptive fields. J Neurosci 28:446–455

    Article  CAS  PubMed  Google Scholar 

  • David SV, Mesgarani N, Fritz JB, Shamma SA (2009) Rapid synaptic depression explains nonlinear modulation of spectro-temporal tuning in primary auditory cortex by natural stimuli. J Neurosci 29:3374–3386. doi:10.1523/JNEUROSCI.5249-08.2009

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Boer R, Kuyper P (1968) Triggered correlation. IEEE Trans Biomed Eng 15:169–179

    Article  PubMed  Google Scholar 

  • deCharms RC, Blake DT, Merzenich MM (1998) Optimizing sound features for cortical neurons. Science 280:1439–1443

    Article  CAS  PubMed  Google Scholar 

  • Depireux DA, Simon JZ, Klein DJ, Shamma SA (2001) Spectro-temporal response field characterization with dynamic ripples in ferret primary auditory cortex. J Neurophysiol 85:1220–1234

    CAS  PubMed  Google Scholar 

  • DiMattina C, Wang X (2006) Virtual vocalization stimuli for investigating neural representations of species-specific vocalizations. J Neurophysiol 95:1244–1262

    Article  PubMed  Google Scholar 

  • Doron NN, Ledoux JE, Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453:345–360. doi:10.1002/cne.10412

    Article  PubMed  Google Scholar 

  • Edeline JM (2003) The thalamo-cortical auditory receptive fields: regulation by the states of vigilance, learning and the neuromodulatory systems. Exp Brain Res 153:554–572

    Article  PubMed  Google Scholar 

  • Edeline JM, Weinberger NM (1993) Receptive field plasticity in the auditory cortex during frequency discrimination training: selective retuning independent of task difficulty. Behav Neurosci 107:82–103

    Article  CAS  PubMed  Google Scholar 

  • Edeline JM, Dutrieux G, Manunta Y, Hennevin E (2001) Diversity of receptive field changes in auditory cortex during natural sleep. Eur J Neurosci 14:1865–1880

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1994) Temporal modulation transfer functions for AM and FM stimuli in cat auditory cortex. Effects of carrier type, modulating waveform and intensity. Hear Res 74:51–66

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ (1998) Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences. J Neurophysiol 80:2743–2764

    CAS  PubMed  Google Scholar 

  • Eggermont JJ (2002) Temporal modulation transfer functions in cat primary auditory cortex: separating stimulus effects from neural mechanisms. J Neurophysiol 87:305–321

    PubMed  Google Scholar 

  • Eggermont JJ, Smith GM (1995) Synchrony between single-unit activity and local field potentials in relation to periodicity coding in primary auditory cortex. J Neurophysiol 73:227–245

    CAS  PubMed  Google Scholar 

  • Eggermont JJ, Aertsen AM, Johannesma PI (1983a) Prediction of the responses of auditory neurons in the midbrain of the grass frog based on the spectro-temporal receptive field. Hear Res 10:191–202

    Article  CAS  PubMed  Google Scholar 

  • Eggermont JJ, Johannesma PM, Aertsen AM (1983b) Reverse-correlation methods in auditory research. Q Rev Biophys 16:341–414

    Article  CAS  PubMed  Google Scholar 

  • Elhilali M, Fritz JB, Chi TS, Shamma SA (2007) Auditory cortical receptive fields: stable entities with plastic abilities. J Neurosci 27:10372–10382

    Article  CAS  PubMed  Google Scholar 

  • Epping WJ, Eggermont JJ (1985) Single-unit characteristics in the auditory midbrain of the immobilized grassfrog. Hear Res 18:223–243

    Article  CAS  PubMed  Google Scholar 

  • Epping WJ, Eggermont JJ (1986a) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. I. Stimulation with acoustic clicks. Hear Res 24:37–54

    Article  CAS  PubMed  Google Scholar 

  • Epping WJ, Eggermont JJ (1986b) Sensitivity of neurons in the auditory midbrain of the grassfrog to temporal characteristics of sound. II. Stimulation with amplitude modulated sound. Hear Res 24:55–72

    Article  CAS  PubMed  Google Scholar 

  • Escabi MA, Schreiner CE (2002) Nonlinear spectrotemporal sound analysis by neurons in the auditory midbrain. J Neurosci 22:4114–4131

    CAS  PubMed  Google Scholar 

  • Fritz J, Shamma S, Elhilali M, Klein D (2003) Rapid task-related plasticity of spectrotemporal receptive fields in primary auditory cortex. Nat Neurosci 6:1216–1223. doi:10.1038/nn1141

    Article  CAS  PubMed  Google Scholar 

  • Gaese BH, Ostwald J (1995) Temporal coding of amplitude and frequency modulation in the rat auditory cortex. Eur J Neurosci 7:438–450

    Article  CAS  PubMed  Google Scholar 

  • Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34:1–25

    Article  CAS  PubMed  Google Scholar 

  • Gaucher Q, Edeline J-M, Gourévitch B (2012) How different are the local field potentials and spiking activities? Insights from multi-electrodes arrays. J Physiol Paris 106:93–103. doi:10.1016/j.jphysparis.2011.09.006

    Article  PubMed  Google Scholar 

  • Gaucher Q, Huetz C, Gourévitch B, Edeline JM (2013) Cortical inhibition reduces information redundancy at presentation of communication sounds in the primary auditory cortex. J Neurosci 33(26):10713–10728

    Article  Google Scholar 

  • Goldberg JM, Brown PB (1968) Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J Neurophysiol 31:639–656

    CAS  PubMed  Google Scholar 

  • Gourévitch B, Edeline J-M (2011) Age-related changes in the guinea pig auditory cortex: relationship with brainstem changes and comparison with tone-induced hearing loss. Eur J Neurosci 34:1953–1965. doi:10.1111/j.1460-9568.2011.07905.x

    Article  PubMed  Google Scholar 

  • Gourévitch B, Eggermont JJ (2007) Spatial representation of neural responses to natural and altered conspecific vocalizations in cat auditory cortex. J Neurophysiol 97:144–158

    Article  PubMed  Google Scholar 

  • Gourévitch B, Doisy T, Avillac M, Edeline JM (2009a) Follow-up of latency and threshold shifts of auditory brainstem responses after single and interrupted acoustic trauma in guinea pig. Brain Res 1304:66–79

    Article  PubMed  Google Scholar 

  • Gourévitch B, Norena A, Shaw G, Eggermont JJ (2009b) Spectrotemporal receptive fields in anesthetized cat primary auditory cortex are context dependent. Cereb Cortex 19:1448–1461

    Article  PubMed  Google Scholar 

  • Heffner HE, Heffner RS, Contos C, Ott T (1994) Audiogram of the hooded Norway rat. Hear Res 73:244–247

    Article  CAS  PubMed  Google Scholar 

  • Heil P, Rajan R, Irvine DR (1992) Sensitivity of neurons in cat primary auditory cortex to tones and frequency-modulated stimuli. I: effects of variation of stimulus parameters. Hear Res 63:108–134

    Article  CAS  PubMed  Google Scholar 

  • Joris PX, Schreiner CE, Rees A (2004) Neural processing of amplitude-modulated sounds. Physiol Rev 84:541–577. doi:10.1152/physrev.00029.2003

    Article  CAS  PubMed  Google Scholar 

  • Kaur S, Lazar R, Metherate R (2004) Intracortical pathways determine breadth of subthreshold frequency receptive fields in primary auditory cortex. J Neurophysiol 91:2551–2567

    Article  PubMed  Google Scholar 

  • Kelly JB, Masterton B (1977) Auditory sensitivity of the albino rat. Journal of Comparative and Physiological Psychology 91:930–936. doi:10.1037/h0077356

    Article  CAS  PubMed  Google Scholar 

  • Kilgard MP, Merzenich MM (1999) Distributed representation of spectral and temporal information in rat primary auditory cortex. Hear Res 134:16–28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein DJ, Depireux DA, Simon JZ, Shamma SA (2000) Robust spectrotemporal reverse correlation for the auditory system: optimizing stimulus design. J Comput Neurosci 9(1):85–111

    Article  CAS  PubMed  Google Scholar 

  • Kowalski N, Versnel H, Shamma SA (1995) Comparison of responses in the anterior and primary auditory fields of the ferret cortex. J Neurophysiol 73:1513–1523

    CAS  PubMed  Google Scholar 

  • Kowalski N, Depireux DA, Shamma SA (1996a) Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J Neurophysiol 76:3503–3523

    CAS  PubMed  Google Scholar 

  • Kowalski N, Depireux DA, Shamma SA (1996b) Analysis of dynamic spectra in ferret primary auditory cortex. II. Prediction of unit responses to arbitrary dynamic spectra. J Neurophysiol 76:3524–3534

    CAS  PubMed  Google Scholar 

  • Laudanski J, Edeline J-M, Huetz C (2012) Differences between spectro-temporal receptive fields derived from artificial and natural stimuli in the auditory cortex. PLoS ONE 7:e50539. doi:10.1371/journal.pone.0050539

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lee YW, Schetzen M (1965) Measurement of the Wiener Kernels of a non-linear system by cross-correlation. Int J Control 2:237–254. doi:10.1080/00207176508905543

    Article  Google Scholar 

  • Lesica NA, Grothe B (2008) Dynamic spectrotemporal feature selectivity in the auditory midbrain. J Neurosci 28:5412–5421. doi:10.1523/JNEUROSCI.0073-08.2008

    Article  CAS  PubMed  Google Scholar 

  • Machens CK, Wehr MS, Zador AM (2004) Linearity of cortical receptive fields measured with natural sounds. The Journal of Neuroscience 24:1089–1100

    Article  CAS  PubMed  Google Scholar 

  • Manunta Y, Edeline JM (1999) Effects of noradrenaline on frequency tuning of auditory cortex neurons during wakefulness and slow-wave sleep. Eur J Neurosci 11:2134–2150

    Article  CAS  PubMed  Google Scholar 

  • Mendelson JR, Cynader MS (1985) Sensitivity of cat primary auditory cortex (AI) neurons to the direction and rate of frequency modulation. Brain Res 327:331–335

    Article  CAS  PubMed  Google Scholar 

  • Mendelson JR, Grasse KL (1992) A comparison of monaural and binaural responses to frequency modulated (FM) sweeps in cat primary auditory cortex. Exp Brain Res 91:435–454

    Article  CAS  PubMed  Google Scholar 

  • Mendelson JR, Schreiner CE, Sutter ML, Grasse KL (1993) Functional topography of cat primary auditory cortex: responses to frequency-modulated sweeps. Exp Brain Res 94:65–87

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, Schreiner CE (2001) Functional convergence of response properties in the auditory thalamocortical system. Neuron 32:151–160

    Article  CAS  PubMed  Google Scholar 

  • Miller LM, Escabí MA, Read HL, Schreiner CE (2002) Spectrotemporal receptive fields in the lemniscal auditory thalamus and cortex. J Neurophysiol 87:516–527

    PubMed  Google Scholar 

  • Moller AR (1973) Statistical evaluation of the dynamic properties of cochlear nucleus units using stimuli modulated with pseudorandom noise. Brain Res 57:443–456

    Article  CAS  PubMed  Google Scholar 

  • Nagarajan SS, Cheung SW, Bedenbaugh P et al (2002) Representation of spectral and temporal envelope of twitter vocalizations in common marmoset primary auditory cortex. J Neurophysiol 87:1723–1737

    PubMed  Google Scholar 

  • Nelken I, Versnel H (2000) Responses to linear and logarithmic frequency-modulated sweeps in ferret primary auditory cortex. Eur J Neurosci 12:549–562

    Article  CAS  PubMed  Google Scholar 

  • Nelken I, Prut Y, Vaadia E, Abeles M (1994) In search of the best stimulus: an optimization procedure for finding efficient stimuli in the cat auditory cortex. Hear Res 72:237–253

    Article  CAS  PubMed  Google Scholar 

  • Orduña I, Mercado E III, Gluck MA, Merzenich MM (2001) Spectrotemporal sensitivities in rat auditory cortical neurons. Hear Res 160:47–57. doi:10.1016/S0378-5955(01)00339-2

    Article  PubMed  Google Scholar 

  • Pienkowski M, Eggermont JJ (2011) Sound frequency representation in primary auditory cortex is level tolerant for moderately loud, complex sounds. J Neurophysiol 106:1016–1027. doi:10.1152/jn.00291.2011

    Article  PubMed  Google Scholar 

  • Pienkowski M, Shaw G, Eggermont JJ (2009) Wiener–Volterra characterization of neurons in primary auditory cortex using poisson-distributed impulse train inputs. J Neurophysiol 101:3031–3041. doi:10.1152/jn.91242.2008

    Article  PubMed Central  PubMed  Google Scholar 

  • Polley DB, Steinberg EE, Merzenich MM (2006) Perceptual learning directs auditory cortical map reorganization through top-down influences. J Neurosci 26:4970–4982. doi:10.1523/JNEUROSCI.3771-05.2006

    Article  CAS  PubMed  Google Scholar 

  • Rabinowitz NC, Willmore BDB, Schnupp JWH, King AJ (2012) Spectrotemporal contrast kernels for neurons in primary auditory cortex. J Neurosci 32:11271–11284. doi:10.1523/JNEUROSCI.1715-12.2012

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ricketts C, Mendelson JR, Anand B, English R (1998) Responses to time-varying stimuli in rat auditory cortex. Hear Res 123:27–30

    Article  CAS  PubMed  Google Scholar 

  • Ringach D, Shapley R (2004) Reverse correlation in neurophysiology. Cognitive Science 28:147–166. doi:10.1207/s15516709cog2802_2

    Article  Google Scholar 

  • Robertson D, Irvine DR (1989) Plasticity of frequency organization in auditory cortex of guinea pigs with partial unilateral deafness. J Comp Neurol 282:456–471. doi:10.1002/cne.902820311

    Article  CAS  PubMed  Google Scholar 

  • Rutkowski RG, Shackleton TM, Schnupp JW et al (2002) Spectrotemporal receptive field properties of single units in the primary, dorsocaudal and ventrorostral auditory cortex of the guinea pig. Audiol Neurootol 7:214–227

    Article  PubMed  Google Scholar 

  • Rutkowski RG, Miasnikov AA, Weinberger NM (2003) Characterisation of multiple physiological fields within the anatomical core of rat auditory cortex. Hear Res 181:116–130

    Article  PubMed  Google Scholar 

  • Sally SL, Kelly JB (1988) Organization of auditory cortex in the albino rat: sound frequency. J Neurophysiol 59:1627–1638

    CAS  PubMed  Google Scholar 

  • Schreiner CE, Calhoun BM (1994) Spectral envelope coding in cat primary auditory cortex: properties of ripple transfer functions. Auditory neuroscience 1:39–61

    Google Scholar 

  • Schreiner CE, Sutter ML (1992) Topography of excitatory bandwidth in cat primary auditory cortex: single-neuron versus multiple-neuron recordings. J Neurophysiol 68:1487–1502

    CAS  PubMed  Google Scholar 

  • Schreiner CE, Urbas JV (1988) Representation of amplitude modulation in the auditory cortex of the cat. II. Comparison between cortical fields. Hear Res 32:49–63

    Article  CAS  PubMed  Google Scholar 

  • Shamma SA, Fleshman JW, Wiser PR, Versnel H (1993) Organization of response areas in ferret primary auditory cortex. J Neurophysiol 69:367–383

    CAS  PubMed  Google Scholar 

  • Shechter B, Depireux DA (2007) Stability of spectro-temporal tuning over several seconds in primary auditory cortex of the awake ferret. Neuroscience 148:806–814

    Article  CAS  PubMed  Google Scholar 

  • Sutter ML, Schreiner CE, McLean M et al (1999) Organization of inhibitory frequency receptive fields in cat primary auditory cortex. J Neurophysiol 82:2358–2371

    CAS  PubMed  Google Scholar 

  • Theunissen FE, Sen K, Doupe AJ (2000) Spectral-temporal receptive fields of nonlinear auditory neurons obtained using natural sounds. J Neurosci 20:2315–2331

    CAS  PubMed  Google Scholar 

  • Valentine PA, Eggermont JJ (2004) Stimulus dependence of spectro-temporal receptive fields in cat primary auditory cortex. Hear Res 196:119–133. doi:10.1016/j.heares.2004.05.011

    Article  PubMed  Google Scholar 

  • Wallace MN, Palmer AR (2008) Laminar differences in the response properties of cells in the primary auditory cortex. Exp Brain Res 184:179–191. doi:10.1007/s00221-007-1092-z

    Article  CAS  PubMed  Google Scholar 

  • Wallace MN, Rutkowski RG, Palmer AR (2000) Identification and localisation of auditory areas in guinea pig cortex. Exp Brain Res 132:445–456

    Article  CAS  PubMed  Google Scholar 

  • Wang X (2000) On cortical coding of vocal communication sounds in primates. Proc Natl Acad Sci USA 97:11843–11849

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wetzel W, Ohl FW, Wagner T, Scheich H (1998) Right auditory cortex lesion in Mongolian gerbils impairs discrimination of rising and falling frequency-modulated tones. Neurosci Lett 252:115–118

    Article  CAS  PubMed  Google Scholar 

  • Zhang LI, Tan AY, Schreiner CE, Merzenich MM (2003) Topography and synaptic shaping of direction selectivity in primary auditory cortex. Nature 424:201–205

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Zhaoping L (2011) Understanding auditory spectro-temporal receptive fields and their changes with input statistics by efficient coding principles. PLoS Comput Biol 7:e1002123. doi:10.1371/journal.pcbi.1002123

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zilles K, Wree A, Dausch N (1990) Anatomy of the neocortex; neurochemical organization. In: Kolb B, Tees RC (eds) The cerebral cortex of the rat. MIT Press, Cambridge, MA, pp 113–150

    Google Scholar 

Download references

Acknowledgments

This work was supported by a grant from the National Research Agency (ANR2011 grant HearFin) to JME and an attractivity fellowship from Paris-Sud University to BG. FO and QG were supported by a fellowship from the Ministère de l’Education Nationale et de la Recherche (MENR). We thank J.J. Eggermont and G. Shaw for their generous help with the acquisition software and N. Mellen for his careful reading of our manuscript. Special thanks to Nathalie Samson, Fabien Lerhicel, Céline Dubois, Pascale Leblanc-Veyrac for taking care of the guinea-pig and rat colonies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Boris Gourévitch.

Additional information

This is one of several papers published together in Brain Topography on the ‘‘Special Issue: Auditory Cortex 2012”.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gourévitch, B., Occelli, F., Gaucher, Q. et al. A New and Fast Characterization of Multiple Encoding Properties of Auditory Neurons. Brain Topogr 28, 379–400 (2015). https://doi.org/10.1007/s10548-014-0375-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-014-0375-5

Keywords

Navigation