Brain Topography

, Volume 27, Issue 4, pp 480–499 | Cite as

An Overview of Stimulus-Specific Adaptation in the Auditory Thalamus



In the auditory brain, some populations of neurons exhibit stimulus-specific adaptation (SSA), whereby they adapt to frequently occurring stimuli but retain sensitivity to stimuli that are rare. SA has been observed in auditory structures from the midbrain to the primary auditory cortex (A1) and has been proposed to be a precursor to the generation of deviance detection. SSA is strongly expressed in non-lemniscal regions of the medial geniculate body (MGB), the principal nucleus of the auditory thalamus. In this account we review the state of the art of SSA research in the MGB, highlighting the importance of this auditory centre in detecting sounds that may be relevant for survival.


Auditory Thalamus Deviance detection SSA MMN Corticofugal modulation 


  1. Abbott LF, Varela JA, Sen K, Nelson SB (1997) Synaptic depression and cortical gain control. Science 275(5297):220–224PubMedGoogle Scholar
  2. Abolafia JM, Vergara R, Arnold MM, Reig R, Sanchez-Vives MV (2011) Cortical auditory adaptation in the awake rat and the role of potassium currents. Cereb Cortex 21(5):977–990. doi:10.1093/cercor/bhq163 PubMedGoogle Scholar
  3. Aguillon BN, Nieto J, Escera C, Malmierca MS (2013) Response to complex patterns of regularity in the inferior colliculus of the anesthetized rat. In: ARO 36th annual midwinter meeting, Baltimore, MA, USA, 16–20 Feb 2013, p 321Google Scholar
  4. Ahmed M, Mallo T, Leppanen PH, Hamalainen J, Ayravainen L, Ruusuvirta T, Astikainen P (2011) Mismatch brain response to speech sound changes in rats. Front Psychol 2:283. doi:10.3389/fpsyg.2011.00283 PubMedCentralPubMedGoogle Scholar
  5. Alitto HJ, Usrey WM (2003) Corticothalamic feedback and sensory processing. Curr Opin Neurobiol 13(4):440–445PubMedGoogle Scholar
  6. Althen H, Grimm S, Escera C (2011) Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS One 6(12):e28522. doi:10.1371/journal.pone.0028522 PubMedCentralPubMedGoogle Scholar
  7. Anderson LA, Malmierca MS (2013) The effect of auditory cortex deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37(1):52–62. doi:10.1111/ejn.12018 PubMedGoogle Scholar
  8. Anderson LA, Christianson GB, Linden JF (2009) Stimulus-specific adaptation occurs in the auditory thalamus. J Neurosci 29(22):7359–7363. doi:10.1523/JNEUROSCI.0793-09.2009 PubMedGoogle Scholar
  9. Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31(47):17306–17316. doi:10.1523/JNEUROSCI.1915-11.2011 PubMedGoogle Scholar
  10. Antunes FM, Covey E, Malmierca MS (2010a) Is there stimulus-specific adaptation in the medial geniculate body of the rat? In: Lopez-Poveda EA, Palmer AR, Meddis R (eds) The neurophysiological bases of auditory perception. Springer, New York, pp 535–544. doi:10.1007/978-1-4419-5686-6_49 Google Scholar
  11. Antunes FM, Nelken I, Covey E, Malmierca MS (2010b) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5(11):e14071. doi:10.1371/journal.pone.0014071 PubMedCentralPubMedGoogle Scholar
  12. Antunes R, Moita MA (2010) Discriminative auditory fear learning requires both tuned and nontuned auditory pathways to the amygdala. J Neurosci 30(29):9782–9787. doi:10.1523/JNEUROSCI.1037-10.2010 PubMedGoogle Scholar
  13. Astikainen P, Ruusuvirta T, Wikgren J, Penttonen M (2006) Memory-based detection of rare sound feature combinations in anesthetized rats. NeuroReport 17(14):1561–1564. doi:10.1097/01.wnr.0000233097.13032.7d PubMedGoogle Scholar
  14. Astikainen P, Stefanics G, Nokia M, Lipponen A, Cong F, Penttonen M, Ruusuvirta T (2011) Memory-based mismatch response to frequency changes in rats. PLoS One 6(9):e24208. doi:10.1371/journal.pone.0024208 PubMedCentralPubMedGoogle Scholar
  15. Avissar M, Furman AC, Saunders JC, Parsons TD (2007) Adaptation reduces spike-count reliability, but not spike-timing precision, of auditory nerve responses. J Neurosci 27(24):6461–6472. doi:10.1523/JNEUROSCI.5239-06.2007 PubMedGoogle Scholar
  16. Ayala YA, Malmierca MS (2013) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 6:89. doi:10.3389/fncir.2012.00089 PubMedCentralPubMedGoogle Scholar
  17. Ayala YA, Perez-Gonzalez D, Duque D, Nelken I, Malmierca MS (2013) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 6:119. doi:10.3389/fncir.2012.00119 PubMedCentralPubMedGoogle Scholar
  18. Bajo VM, King AJ (2012) Cortical modulation of auditory processing in the midbrain. Front Neural Circuits 6:114. doi:10.3389/fncir.2012.00114 PubMedCentralPubMedGoogle Scholar
  19. Bajo VM, Merchan MA, Lopez DE, Rouiller EM (1993) Neuronal morphology and efferent projections of the dorsal nucleus of the lateral lemniscus in the rat. J Comp Neurol 334(2):241–262. doi:10.1002/cne.903340207 PubMedGoogle Scholar
  20. Bajo VM, Nodal FR, Moore DR, King AJ (2010) The descending corticocollicular pathway mediates learning-induced auditory plasticity. Nat Neurosci 13(2):253–260. doi:10.1038/nn.2466 PubMedCentralPubMedGoogle Scholar
  21. Bajo VM, Rouiller EM, Welker E, Clarke S, Villa AE, de Ribaupierre Y, de Ribaupierre F (1995) Morphology and spatial distribution of corticothalamic terminals originating from the cat auditory cortex. Hearing Res 83(1–2):161–174Google Scholar
  22. Bartlett EL, Smith PH (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81(5):1999–2016PubMedGoogle Scholar
  23. Bartlett EL, Smith PH (2002) Effects of paired-pulse and repetitive stimulation on neurons in the rat medial geniculate body. Neuroscience 113(4):957–974PubMedGoogle Scholar
  24. Bartlett EL, Wang X (2007) Neural representations of temporally modulated signals in the auditory thalamus of awake primates. J Neurophysiol 97(2):1005–1017. doi:10.1152/jn.00593.2006 PubMedGoogle Scholar
  25. Bartlett EL, Stark JM, Guillery RW, Smith PH (2000) Comparison of the fine structure of cortical and collicular terminals in the rat medial geniculate body. Neuroscience 100(4):811–828PubMedGoogle Scholar
  26. Bäuerle P, von der Behrens W, Kossl M, Gaese BH (2011) Stimulus-specific adaptation in the gerbil primary auditory thalamus is the result of a fast frequency-specific habituation and is regulated by the corticofugal system. J Neurosci 31(26):9708–9722. doi:10.1523/JNEUROSCI.5814-10.2011 PubMedGoogle Scholar
  27. Beckers GJ, Gahr M (2012) Large-scale synchronized activity during vocal deviance detection in the zebra finch auditory forebrain. J Neurosci 32(31):10594–10608. doi:10.1523/JNEUROSCI.6045-11.2012 PubMedGoogle Scholar
  28. Bordi F, LeDoux JE (1994a) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98(2):261–274PubMedGoogle Scholar
  29. Bordi F, LeDoux JE (1994b) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. II. Cells receiving convergent auditory and somatosensory inputs and cells antidromically activated by amygdala stimulation. Exp Brain Res 98(2):275–286PubMedGoogle Scholar
  30. Brenner N, Bialek W, de Ruyter van Steveninck R (2000) Adaptive rescaling maximizes information transmission. Neuron 26(3):695–702PubMedGoogle Scholar
  31. Calford MB, Aitkin LM (1983) Ascending projections to the medial geniculate body of the cat: evidence for multiple, parallel auditory pathways through thalamus. J Neurosci 3(11):2365–2380PubMedGoogle Scholar
  32. Campi KL, Bales KL, Grunewald R, Krubitzer L (2010) Connections of auditory and visual cortex in the prairie vole (Microtus ochrogaster): evidence for multisensory processing in primary sensory areas. Cereb Cortex 20(1):89–108. doi:10.1093/cercor/bhp082 PubMedCentralPubMedGoogle Scholar
  33. Cant NB, Benson CG (2006) Organization of the inferior colliculus of the gerbil (Meriones unguiculatus): differences in distribution of projections from the cochlear nuclei and the superior olivary complex. J Comp Neurol 495(5):511–528. doi:10.1002/cne.20888 PubMedCentralPubMedGoogle Scholar
  34. Cappe C, Morel A, Barone P, Rouiller EM (2009a) The thalamocortical projection systems in primate: an anatomical support for multisensory and sensorimotor interplay. Cereb Cortex 19(9):2025–2037. doi:10.1093/cercor/bhn228 PubMedCentralPubMedGoogle Scholar
  35. Cappe C, Rouiller EM, Barone P (2009b) Multisensory anatomical pathways. Hear Res 258(1–2):28–36. doi:10.1016/j.heares.2009.04.017 PubMedGoogle Scholar
  36. Carandini M (2000) Visual cortex: fatigue and adaptation. Curr Biol 10(16):R605–R607PubMedGoogle Scholar
  37. Carral V, Corral MJ, Escera C (2005a) Auditory event-related potentials as a function of abstract change magnitude. NeuroReport 16(3):301–305PubMedGoogle Scholar
  38. Carral V, Huotilainen M, Ruusuvirta T, Fellman V, Näätänen R, Escera C (2005b) A kind of auditory ‘primitive intelligence’ already present at birth. Eur J Neurosci 21(11):3201–3204. doi:10.1111/j.1460-9568.2005.04144.x PubMedGoogle Scholar
  39. Carrasco A, Lomber SG (2009) Differential modulatory influences between primary auditory cortex and the anterior auditory field. J Neurosci 29(26):8350–8362. doi:10.1523/JNEUROSCI.6001-08.2009 PubMedGoogle Scholar
  40. Cetas JS, Price RO, Crowe J, Velenovsky DS, McMullen NT (2003) Dendritic orientation and laminar architecture in the rabbit auditory thalamus. J Comp Neurol 458(3):307–317. doi:10.1002/cne.10595 PubMedGoogle Scholar
  41. Chung S, Li X, Nelson SB (2002) Short-term depression at thalamocortical synapses contributes to rapid adaptation of cortical sensory responses in vivo. Neuron 34(3):437–446PubMedGoogle Scholar
  42. Clerici WJ, Coleman JR (1990) Anatomy of the rat medial geniculate body: I. Cytoarchitecture, myeloarchitecture, and neocortical connectivity. J Comp Neurol 297(1):14–31. doi:10.1002/cne.902970103 PubMedGoogle Scholar
  43. Clerici WJ, McDonald AJ, Thompson R, Coleman JR (1990) Anatomy of the rat medial geniculate body: II. Dendritic morphology. J Comp Neurol 297(1):32–54. doi:10.1002/cne.902970104 PubMedGoogle Scholar
  44. Condon CD, Weinberger NM (1991) Habituation produces frequency-specific plasticity of receptive fields in the auditory cortex. Behav Neurosci 105(3):416–430PubMedGoogle Scholar
  45. Coomber B, Edwards D, Jones SJ, Shackleton TM, Goldschmidt J, Wallace MN, Palmer AR (2011) Cortical inactivation by cooling in small animals. Front Syst Neurosci 5:53. doi:10.3389/fnsys.2011.00053 PubMedCentralPubMedGoogle Scholar
  46. Costa-Faidella J, Grimm S, Slabu L, Diaz-Santaella F, Escera C (2011) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48(6):774–783. doi:10.1111/j.1469-8986.2010.01144.x PubMedGoogle Scholar
  47. Csepe V, Karmos G, Molnar M (1987a) Effects of signal probability on sensory evoked potentials in cats. Int J Neurosci 33(1–2):61–71PubMedGoogle Scholar
  48. Csepe V, Karmos G, Molnar M (1987b) Evoked potential correlates of stimulus deviance during wakefulness and sleep in cat–animal model of mismatch negativity. Electroencephalogr Clin Neurophysiol 66(6):571–578PubMedGoogle Scholar
  49. de la Mothe LA, Blumell S, Kajikawa Y, Hackett TA (2006) Thalamic connections of auditory cortex in marmoset monkeys: lateral belt and parabelt regions. Anat Rec (Hoboken) 295(5):822–836. doi:10.1002/ar.22454 Google Scholar
  50. De Ribaupierre F (1997) Acoustical information processing in the auditory thalamus and cerebral cortex. In: Romand GEaR (ed) The central auditory system. Oxford University Press, Oxford, p 317–397Google Scholar
  51. Dean I, Robinson BL, Harper NS, McAlpine D (2008) Rapid neural adaptation to sound level statistics. J Neurosci 28(25):6430–6438. doi:10.1523/JNEUROSCI.0470-08.2008 PubMedGoogle Scholar
  52. deCharms RC, Merzenich MM (1996) Primary cortical representation of sounds by the coordination of action-potential timing. Nature 381(6583):610–613. doi:10.1038/381610a0 PubMedGoogle Scholar
  53. Donishi T, Kimura A, Okamoto K, Tamai Y (2006) “Ventral” area in the rat auditory cortex: a major auditory field connected with the dorsal division of the medial geniculate body. Neuroscience 141(3):1553–1567. doi:10.1016/j.neuroscience.2006.04.037 PubMedGoogle Scholar
  54. Doron NN, Ledoux JE, Semple MN (2002) Redefining the tonotopic core of rat auditory cortex: physiological evidence for a posterior field. J Comp Neurol 453(4):345–360. doi:10.1002/cne.10412 PubMedGoogle Scholar
  55. Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency, and intensity dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32(49):17762–17774. doi:10.1523/JNEUROSCI.3190-12.2012 PubMedGoogle Scholar
  56. Duque D, Malmierca MS, Caspary DM (2013) Modulation of stimulus-specific adaptation by GABAA receptor activation or blockade in the medial geniculate body of the anesthetized rat. J Physiol. doi: 10.1113/jphysiol.2013.261941
  57. Edeline JM, Weinberger NM (1991) Subcortical adaptive filtering in the auditory system: associative receptive field plasticity in the dorsal medial geniculate body. Behav Neurosci 105(1):154–175PubMedGoogle Scholar
  58. Edeline JM, Weinberger NM (1992) Associative retuning in the thalamic source of input to the amygdala and auditory cortex: receptive field plasticity in the medial division of the medial geniculate body. Behav Neurosci 106(1):81–105PubMedGoogle Scholar
  59. Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cognitive Neurosci 10(5):590–604Google Scholar
  60. Eytan D, Brenner N, Marom S (2003) Selective adaptation in networks of cortical neurons. J Neurosci 23(28):9349–9356PubMedGoogle Scholar
  61. Fairhall AL, Lewen GD, Bialek W, de Ruyter Van Steveninck RR (2001) Efficiency and ambiguity in an adaptive neural code. Nature 412(6849):787–792. doi:10.1038/3509050035090500 PubMedGoogle Scholar
  62. Farley BJ, Quirk MC, Doherty JJ, Christian EP (2010) Stimulus-specific adaptation in auditory cortex is an NMDA-independent process distinct from the sensory novelty encoded by the mismatch negativity. J Neurosci 30(49):16475–16484. doi:10.1523/JNEUROSCI.2793-10.2010 PubMedGoogle Scholar
  63. Feliciano M, Potashner SJ (1995) Evidence for a glutamatergic pathway from the guinea pig auditory cortex to the inferior colliculus. J Neurochem 65(3):1348–1357PubMedGoogle Scholar
  64. Fischer C, Morlet D, Giard M (2000) Mismatch negativity and N100 in comatose patients. Audiol Neurootol 5(3–4):192–197PubMedGoogle Scholar
  65. Fishman YI, Steinschneider M (2012) Searching for the mismatch negativity in primary auditory cortex of the awake monkey: deviance detection or stimulus specific adaptation? J Neurosci 32(45):15747–15758. doi:10.1523/JNEUROSCI.2835-12.2012 PubMedCentralPubMedGoogle Scholar
  66. Games KD, Winer JA (1988) Layer V in rat auditory cortex: projections to the inferior colliculus and contralateral cortex. Hear Res 34(1):1–25PubMedGoogle Scholar
  67. Gerren RA, Weinberger NM (1983) Long term potentiation in the magnocellular medial geniculate nucleus of the anesthetized cat. Brain Res 265(1):138–142PubMedGoogle Scholar
  68. Ghosh S, Murray GM, Turman AB, Rowe MJ (1994) Corticothalamic influences on transmission of tactile information in the ventroposterolateral thalamus of the cat: effect of reversible inactivation of somatosensory cortical areas I and II. Exp Brain Res 100(2):276–286PubMedGoogle Scholar
  69. Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85(1):88–92. doi:10.1016/j.ijpsycho.2011.05.012 PubMedGoogle Scholar
  70. Grimm S, Escera C, Slabu L, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48(3):377–384. doi:10.1111/j.1469-8986.2010.01073.x PubMedGoogle Scholar
  71. Grimm S, Recasens M, Althen H, Escera C (2012) Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biol Psychol 89(1):232–239. doi:10.1016/j.biopsycho.2011.10.014 PubMedGoogle Scholar
  72. Han L, Zhang Y, Lou Y, Xiong Y (2012) Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study. PLoS One 7(4):e34837. doi:10.1371/journal.pone.0034837 PubMedCentralPubMedGoogle Scholar
  73. He J (1997) Modulatory effects of regional cortical activation on the onset responses of the cat medial geniculate neurons. J Neurophysiol 77(2):896–908PubMedGoogle Scholar
  74. He J (2003a) Corticofugal modulation of the auditory thalamus. Exp Brain Res 153(4):579–590. doi:10.1007/s00221-003-1680-5 PubMedGoogle Scholar
  75. He J (2003b) Corticofugal modulation on both ON and OFF responses in the nonlemniscal auditory thalamus of the guinea pig. J Neurophysiol 89(1):367–381. doi:10.1152/jn.00593.2002 PubMedGoogle Scholar
  76. He J, Yu YQ, Xiong Y, Hashikawa T, Chan YS (2002) Modulatory effect of cortical activation on the lemniscal auditory thalamus of the Guinea pig. J Neurophysiol 88(2):1040–1050PubMedGoogle Scholar
  77. Hefti BJ, Smith PH (2000) Anatomy, physiology, and synaptic responses of rat layer V auditory cortical cells and effects of intracellular GABA(A) blockade. J Neurophysiol 83(5):2626–2638PubMedGoogle Scholar
  78. Hu B, Senatorov V, Mooney D (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol 479(Pt 2):217–231PubMedCentralPubMedGoogle Scholar
  79. Huang CL, Winer JA (2000) Auditory thalamocortical projections in the cat: laminar and areal patterns of input. J Comp Neurol 427(2):302–331. doi:10.1002/1096-9861(20001113)427:2<302:AID-CNE10>3.0.CO;2-J PubMedGoogle Scholar
  80. Huotilainen M, Kujala A, Hotakainen M, Parkkonen L, Taulu S, Simola J, Nenonen J, Karjalainen M, Näätänen R (2005) Short-term memory functions of the human fetus recorded with magnetoencephalography. NeuroReport 16(1):81–84PubMedGoogle Scholar
  81. Irvine DR, Huebner H (1979) Acoustic response characteristics of neurons in nonspecific areas of cat cerebral cortex. J Neurophysiol 42(1 Pt 1):107–122PubMedGoogle Scholar
  82. Isaacson JS, Scanziani M (2011) How inhibition shapes cortical activity. Neuron 72(2):231–243PubMedCentralPubMedGoogle Scholar
  83. Ito T, Oliver DL (2012) The basic circuit of the IC: tectothalamic neurons with different patterns of synaptic organization send different messages to the thalamus. Front Neural Circuits 6:48. doi:10.3389/fncir.2012.00048 PubMedCentralPubMedGoogle Scholar
  84. Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114(6):1133–1143PubMedGoogle Scholar
  85. Jacobsen T, Schröger E, Sussman E (2004) Pre-attentive categorization of vowel formant structure in complex tones. Brain Res Cogn Brain Res 20(3):473–479. doi:10.1016/j.cogbrainres.2004.03.021 PubMedGoogle Scholar
  86. Jahnsen H, Llinas R (1984) Voltage-dependent burst-to-tonic switching of thalamic cell activity: an in vitro study. Arch Ital Biol 122(1):73–82PubMedGoogle Scholar
  87. Javitt DC, Schroeder CE, Steinschneider M, Arezzo JC, Vaughan HG Jr (1992) Demonstration of mismatch negativity in the monkey. Electroencephalogr Clin Neurophysiol 83(1):87–90PubMedGoogle Scholar
  88. Javitt DC, Steinschneider M, Schroeder CE, Vaughan HG Jr, Arezzo JC (1994) Detection of stimulus deviance within primate primary auditory cortex: intracortical mechanisms of mismatch negativity (MMN) generation. Brain Res 667(2):192–200PubMedGoogle Scholar
  89. Kane NM, Curry SH, Rowlands CA, Manara AR, Lewis T, Moss T, Cummins BH, Butler SR (1996) Event-related potentials—neurophysiological tools for predicting emergence and early outcome from traumatic coma. Intensive Care Med 22(1):39–46PubMedGoogle Scholar
  90. Kimura A, Donishi T, Sakoda T, Hazama M, Tamai Y (2003) Auditory thalamic nuclei projections to the temporal cortex in the rat. Neuroscience 117(4):1003–1016PubMedGoogle Scholar
  91. Kimura A, Donishi T, Okamoto K, Imbe H, Tamai Y (2007) Efferent connections of the ventral auditory area in the rat cortex: implications for auditory processing related to emotion. Eur J Neurosci 25(9):2819–2834. doi:10.1111/j.1460-9568.2007.05519.x PubMedGoogle Scholar
  92. Kimura A, Yokoi I, Imbe H, Donishi T, Kaneoke Y (2012) Auditory thalamic reticular nucleus of the rat: anatomical nodes for modulation of auditory and cross-modal sensory processing in the loop connectivity between the cortex and thalamus. J Comp Neurol 520(7):1457–1480. doi:10.1002/cne.22805 PubMedGoogle Scholar
  93. Komura Y, Tamura R, Uwano T, Nishijo H, Kaga K, Ono T (2001) Retrospective and prospective coding for predicted reward in the sensory thalamus. Nature 412(6846):546–549. doi:10.1038/3508759535087595 PubMedGoogle Scholar
  94. Komura Y, Tamura R, Uwano T, Nishijo H, Ono T (2005) Auditory thalamus integrates visual inputs into behavioral gains. Nat Neurosci 8(9):1203–1209. doi:10.1038/nn1528 PubMedGoogle Scholar
  95. Kraus N, McGee T, Carrell T, King C, Littman T, Nicol T (1994a) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96(5 Pt 1):2758–2768PubMedGoogle Scholar
  96. Kraus N, McGee T, Littman T, Nicol T, King C (1994b) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72(3):1270–1277PubMedGoogle Scholar
  97. LeDoux JE (1995) Emotion: clues from the brain. Annu Rev Psychol 46:209–235. doi:10.1146/ PubMedGoogle Scholar
  98. Ledoux JE, Muller J (1997) Emotional memory and psychopathology. Philos Trans R Soc Lond B 352(1362):1719–1726. doi:10.1098/rstb1997.0154 Google Scholar
  99. LeDoux JE, Sakaguchi A, Reis DJ (1984) Subcortical efferent projections of the medial geniculate nucleus mediate emotional responses conditioned to acoustic stimuli. J Neurosci 4(3):683–698PubMedGoogle Scholar
  100. LeDoux JE, Ruggiero DA, Reis DJ (1985a) Projections to the subcortical forebrain from anatomically defined regions of the medial geniculate body in the rat. J Comp Neurol 242(2):182–213. doi:10.1002/cne.902420204 PubMedGoogle Scholar
  101. LeDoux JE, Sakaguchi A, Iwata J, Reis DJ (1985b) Auditory emotional memories: establishment by projections from the medial geniculate nucleus to the posterior neostriatum and/or dorsal amygdala. Ann N Y Acad Sci 444:463–464PubMedGoogle Scholar
  102. Ledoux JE, Ruggiero DA, Forest R, Stornetta R, Reis DJ (1987) Topographic organization of convergent projections to the thalamus from the inferior colliculus and spinal cord in the rat. J Comp Neurol 264(1):123–146. doi:10.1002/cne.902640110 PubMedGoogle Scholar
  103. Lee CC, Winer JA (2008) Connections of cat auditory cortex: I. Thalamocortical system. J Comp Neurol 507(6):1879–1900. doi:10.1002/cne.21611 PubMedCentralPubMedGoogle Scholar
  104. Lee CC, Winer JA (2011) Convergence of thalamic and cortical pathways in cat auditory cortex. Hear Res 274(1–2):85–94. doi:10.1016/j.heares.2010.05.008 PubMedCentralPubMedGoogle Scholar
  105. Leon A, Elgueda D, Silva MA, Hamame CM, Delano PH (2012) Auditory cortex basal activity modulates cochlear responses in chinchillas. PLoS One 7(4):e36203. doi:10.1371/journal.pone.0036203 PubMedCentralPubMedGoogle Scholar
  106. Leung S, Recasens M, Grimm S, Escera C (2013) Electrophysiological index of acoustic temporal regularity violation in the middle latency range. Clin Neurophysiol. doi:10.1016/j.clinph.2013.06.001 PubMedGoogle Scholar
  107. Liu X, Yan Y, Wang Y, Yan J (2010) Corticofugal modulation of initial neural processing of sound information from the ipsilateral ear in the mouse. PLoS One 5(11):e14038. doi:10.1371/journal.pone.0014038 PubMedCentralPubMedGoogle Scholar
  108. Llano DA, Sherman SM (2008) Evidence for nonreciprocal organization of the mouse auditory thalamocortical-corticothalamic projection systems. J Comp Neurol 507(2):1209–1227. doi:10.1002/cne.21602 PubMedGoogle Scholar
  109. Lomber SG, Payne BR, Horel JA (1999) The cryoloop: an adaptable reversible cooling deactivation method for behavioral or electrophysiological assessment of neural function. J Neurosci Methods 86(2):179–194PubMedGoogle Scholar
  110. Lumani A, Zhang H (2010) Responses of neurons in the rat’s dorsal cortex of the inferior colliculus to monaural tone bursts. Brain Res 1351:115–129. doi:10.1016/j.brainres.2010.06.066 PubMedGoogle Scholar
  111. Luo F, Wang Q, Kashani A, Yan J (2008) Corticofugal modulation of initial sound processing in the brain. J Neurosci 28(45):11615–11621. doi:10.1523/JNEUROSCI.3972-08.2008 PubMedGoogle Scholar
  112. Malmierca MS, Hackett TA (2010) Structural organization of the ascending auditory pathway. In: Moore DR (ed) The Oxford handbook of auditory science: the auditory brain. OUP, New York, pp 9–41Google Scholar
  113. Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29(17):5483–5493. doi:10.1523/JNEUROSCI.4153-08.2009 PubMedCentralPubMedGoogle Scholar
  114. Malone BJ, Scott BH, Semple MN (2002) Context-dependent adaptive coding of interaural phase disparity in the auditory cortex of awake macaques. J Neurosci 22(11):4625–4638PubMedGoogle Scholar
  115. May P, Tiitinen H (2001) Human cortical processing of auditory events over time. NeuroReport 12(3):573–577PubMedGoogle Scholar
  116. May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47(1):66–122. doi:10.1111/j.1469-8986.2009.00856.x PubMedGoogle Scholar
  117. Moore DR (1993) Plasticity of binaural hearing and some possible mechanisms following late-onset deprivation. J Am Acad Audiol 4(5):277–283 (discussion 283–274)PubMedGoogle Scholar
  118. Morest DK (1964) The neuronal architecture of the medial geniculate body of the cat. J Anat 98:611–630PubMedCentralPubMedGoogle Scholar
  119. Moriizumi T, Hattori T (1991) Pyramidal cells in rat temporoauditory cortex project to both striatum and inferior colliculus. Brain Res Bull 27(1):141–144PubMedGoogle Scholar
  120. Muller JR, Metha AB, Krauskopf J, Lennie P (1999) Rapid adaptation in visual cortex to the structure of images. Science 285(5432):1405–1408PubMedGoogle Scholar
  121. Näätänen R, Gaillard AW, Mantysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol (Amst) 42(4):313–329Google Scholar
  122. Näätänen R, Paavilainen P, Alho K, Reinikainen K, Sams M (1987) The mismatch negativity to intensity changes in an auditory stimulus sequence. Electroencephalogr Clin Neurophysiol Suppl 40:125–131PubMedGoogle Scholar
  123. Näätänen R, Schröger E, Karakas S, Tervaniemi M, Paavilainen P (1993) Development of a memory trace for a complex sound in the human brain. NeuroReport 4(5):503–506PubMedGoogle Scholar
  124. Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42(1):25–32. doi:10.1111/j.1469-8986.2005.00256.x PubMedGoogle Scholar
  125. Näätänen R, Astikainen P, Ruusuvirta T, Huotilainen M (2010) Automatic auditory intelligence: an expression of the sensory-cognitive core of cognitive processes. Brain Res Rev 64(1):123–136. doi:10.1016/j.brainresrev.2010.03.001 PubMedGoogle Scholar
  126. Nakamoto KT, Shackleton TM, Palmer AR (2010) Responses in the inferior colliculus of the guinea pig to concurrent harmonic series and the effect of inactivation of descending controls. J Neurophysiol 103(4):2050–2061. doi:10.1152/jn.00451.2009 PubMedCentralPubMedGoogle Scholar
  127. Nakamura T, Michie PT, Fulham WR, Todd J, Budd TW, Schall U, Hunter M, Hodgson DM (2011) Epidural auditory event-related potentials in the rat to frequency and duration deviants: evidence of mismatch negativity? Front Psychol 2:367. doi:10.3389/fpsyg.2011.00367 PubMedCentralPubMedGoogle Scholar
  128. Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21(3–4):214–223Google Scholar
  129. Ojima H (1994) Terminal morphology and distribution of corticothalamic fibers originating from layers 5 and 6 of cat primary auditory cortex. Cereb Cortex 4(6):646–663PubMedGoogle Scholar
  130. Ojima H, Rouiller EM (2011) Auditory cortical projections to the medial geniculate body. In: J.A. Winer CES (ed) The auditory cortex. Springer, New York, p 171–188Google Scholar
  131. Orman SS, Humphrey GL (1981) Effects of changes in cortical arousal and of auditory cortex cooling on neuronal activity in the medial geniculate body. Exp Brain Res 42(3–4):475–482PubMedGoogle Scholar
  132. Paavilainen P, Jiang D, Lavikainen J, Näätänen R (1993) Stimulus duration and the sensory memory trace: an event-related potential study. Biol Psychol 35(2):139–152PubMedGoogle Scholar
  133. Palmer AR, Hall DA, Sumner C, Barrett DJ, Jones S, Nakamoto K, Moore DR (2007) Some investigations into non-passive listening. Hear Res 229(1–2):148–157. doi:10.1016/j.heares.2006.12.007 PubMedGoogle Scholar
  134. Patel CR, Redhead C, Cervi AL, Zhang H (2012) Neural sensitivity to novel sounds in the rat’s dorsal cortex of the inferior colliculus as revealed by evoked local field potentials. Hear Res 286(1–2):41–54. doi:10.1016/j.heares.2012.02.007 PubMedGoogle Scholar
  135. Perez-Gonzalez D, Malmierca MS (2012) Variability of the time course of stimulus-specific adaptation in the inferior colliculus. Front Neural Circuits 6:107. doi:10.3389/fncir.2012.00107 PubMedCentralPubMedGoogle Scholar
  136. Perez-Gonzalez D, Malmierca MS, Covey E (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22(11):2879–2885. doi:10.1111/j.1460-9568.2005.04472.x PubMedGoogle Scholar
  137. Perez-Gonzalez D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7(3):e34297. doi:10.1371/journal.pone.0034297 PubMedCentralPubMedGoogle Scholar
  138. Peruzzi D, Bartlett E, Smith PH, Oliver DL (1997) A monosynaptic GABAergic input from the inferior colliculus to the medial geniculate body in rat. J Neurosci 17(10):3766–3777PubMedGoogle Scholar
  139. Pincze Z, Lakatos P, Rajkai C, Ulbert I, Karmos G (2001) Separation of mismatch negativity and the N1 wave in the auditory cortex of the cat: a topographic study. Clin Neurophysiol 112(5):778–784PubMedGoogle Scholar
  140. Polley DB, Read HL, Storace DA, Merzenich MM (2007) Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J Neurophysiol 97(5):3621–3638. doi:10.1152/jn.01298.2006 PubMedGoogle Scholar
  141. Ponnath A, Hoke KL, Farris HE (2013) Stimulus change detection in phasic auditory units in the frog midbrain: frequency and ear specific adaptation. J Comp Physiol A 199(4):295–313. doi:10.1007/s00359-013-0794-x Google Scholar
  142. Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.1093/cercor/bhs295 PubMedGoogle Scholar
  143. Reches A, Gutfreund Y (2008) Stimulus-specific adaptations in the gaze control system of the barn owl. J Neurosci 28(6):1523–1533. doi:10.1523/JNEUROSCI.3785-07.2008 PubMedGoogle Scholar
  144. Reches A, Netser S, Gutfreund Y (2010) Interactions between stimulus-specific adaptation and visual auditory integration in the forebrain of the barn owl. J Neurosci 30(20):6991–6998. doi:10.1523/JNEUROSCI.5723-09.2010 PubMedGoogle Scholar
  145. Richardson BD, Hancock KE, Caspary DM (2013) Stimulus-specific adaptation in auditory thalamus of young and aged awake rats. J Neurophysiol. doi:10.1152/jn.00403.2013 PubMedGoogle Scholar
  146. Robinson BL, McAlpine D (2009) Gain control mechanisms in the auditory pathway. Curr Opin Neurobiol 19(4):402–407. doi:10.1016/j.conb.2009.07.006 PubMedGoogle Scholar
  147. Roger C, Hasbroucq T, Rabat A, Vidal F, Burle B (2009) Neurophysics of temporal discrimination in the rat: a mismatch negativity study. Psychophysiology 46(5):1028–1032. doi:10.1111/j.1469-8986.2009.00840.x PubMedGoogle Scholar
  148. Rose D, Blakemore C (1974) Effects of bicuculline on functions of inhibition in visual cortex. Nature 249(455):375–377PubMedGoogle Scholar
  149. Rothman JS, Cathala L, Steuber V, Silver RA (2009) Synaptic depression enables neuronal gain control. Nature 457(7232):1015–1018. doi:10.1038/nature07604 PubMedCentralPubMedGoogle Scholar
  150. Rouiller EM, Welker E (2000) A comparative analysis of the morphology of corticothalamic projections in mammals. Brain Res Bull 53(6):727–741PubMedGoogle Scholar
  151. Rushmore RJ, Payne BR, Lomber SG (2005) Functional impact of primary visual cortex deactivation on subcortical target structures in the thalamus and midbrain. J Comp Neurol 488(4):414–426. doi:10.1002/cne.20597 PubMedGoogle Scholar
  152. Ruusuvirta T, Astikainen P, Wikgren J, Nokia M (2010) Hippocampus responds to auditory change in rabbits. Neuroscience 170(1):232–237. doi:10.1016/j.neuroscience.2010.06.062 PubMedGoogle Scholar
  153. Ruusuvirta T, Lipponen A, Pellinen E, Penttonen M, Astikainen P (2013) Auditory cortical and hippocampal-system mismatch responses to duration deviants in urethane-anesthetized rats. PLoS One 8(1):e54624. doi:10.1371/journal.pone.0054624 PubMedCentralPubMedGoogle Scholar
  154. Ryugo DK, Weinberger NM (1976) Corticofugal modulation of the medial geniculate body. Exp Neurol 51(2):377–391PubMedGoogle Scholar
  155. Ryugo DK, Weinberger NM (1978) Differential plasticity of morphologically distinct neuron populations in the medical geniculate body of the cat during classical conditioning. Behav Biol 22(3):275–301PubMedGoogle Scholar
  156. Saldana E, Feliciano M, Mugnaini E (1996) Distribution of descending projections from primary auditory neocortex to inferior colliculus mimics the topography of intracollicular projections. J Comp Neurol 371(1):15–40. doi:10.1002/(SICI)1096-9861(19960715)371:1<15:AID-CNE2>3.0.CO;2-O10.1002/(SICI)1096-9861(19960715)371:1<15:AID-CNE2>3.0.CO;2-O PubMedGoogle Scholar
  157. Sambeth A, Pakarinen S, Ruohio K, Fellman V, van Zuijen TL, Huotilainen M (2009) Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography. Clin Neurophysiol 120(3):530–538. doi:10.1016/j.clinph.2008.12.033 PubMedGoogle Scholar
  158. Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62(6):437–448PubMedGoogle Scholar
  159. Sanchez-Vives MV, Nowak LG, McCormick DA (2000a) Cellular mechanisms of long-lasting adaptation in visual cortical neurons in vitro. J Neurosci 20(11):4286–4299PubMedGoogle Scholar
  160. Sanchez-Vives MV, Nowak LG, McCormick DA (2000b) Membrane mechanisms underlying contrast adaptation in cat area 17 in vivo. J Neurosci 20(11):4267–4285PubMedGoogle Scholar
  161. Schreiner CE, Cynader MS (1984) Basic functional organization of second auditory cortical field (AII) of the cat. J Neurophysiol 51(6):1284–1305PubMedGoogle Scholar
  162. Schul J, Mayo AM, Triblehorn JD (2012) Auditory change detection by a single neuron in an insect. J Comp Physiol A 198(9):695–704. doi:10.1007/s00359-012-0740-3 Google Scholar
  163. Schwartz O, Simoncelli EP (2001) Natural signal statistics and sensory gain control. Nat Neurosci 4(8):819–825. doi:10.1038/90526 PubMedGoogle Scholar
  164. Sherman SM (2001a) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24(2):122–126PubMedGoogle Scholar
  165. Sherman SM (2001b) A wake-up call from the thalamus. Nat Neurosci 4(4):344–346. doi:10.1038/85973 PubMedGoogle Scholar
  166. Sherman SM (2007) The thalamus is more than just a relay. Curr Opin Neurobiol 17(4):417–422. doi:10.1016/j.conb.2007.07.003 PubMedCentralPubMedGoogle Scholar
  167. Sherman SM, Guillery RW (1996) Functional organization of thalamocortical relays. J Neurophysiol 76(3):1367–1395PubMedGoogle Scholar
  168. Sherman SM, Guillery RW (2002) The role of the thalamus in the flow of information to the cortex. Philos Trans R Soc Lond B 357(1428):1695–1708. doi:10.1098/rstb2002.1161 Google Scholar
  169. Sillito AM, Jones HE, Gerstein GL, West DC (1994) Feature-linked synchronization of thalamic relay cell firing induced by feedback from the visual cortex. Nature 369(6480):479–482. doi:10.1038/369479a0 PubMedGoogle Scholar
  170. Slabu L, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32(5):859–865. doi:10.1111/j.1460-9568.2010.07324.x PubMedGoogle Scholar
  171. Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32(4):1447–1452. doi:10.1523/JNEUROSCI.2557-11.2012 PubMedGoogle Scholar
  172. Smith PH, Bartlett EL, Kowalkowski A (2006) Unique combination of anatomy and physiology in cells of the rat paralaminar thalamic nuclei adjacent to the medial geniculate body. J Comp Neurol 496(3):314–334. doi:10.1002/cne.20913 PubMedCentralPubMedGoogle Scholar
  173. Smith PH, Uhlrich DJ, Manning KA, Banks MI (2012) Thalamocortical projections to rat auditory cortex from the ventral and dorsal divisions of the medial geniculate nucleus. J Comp Neurol 520(1):34–51. doi:10.1002/cne.22682 PubMedCentralPubMedGoogle Scholar
  174. Sonnadara RR, Alain C, Trainor LJ (2006) Occasional changes in sound location enhance middle latency evoked responses. Brain Res 1076(1):187–192. doi:10.1016/j.brainres.2005.12.093 PubMedGoogle Scholar
  175. Suga N, Ma X (2003) Multiparametric corticofugal modulation and plasticity in the auditory system. Nat Rev Neurosci 4(10):783–794. doi:10.1038/nrn1222nrn1222 PubMedGoogle Scholar
  176. Sun X, Xia Q, Lai CH, Shum DK, Chan YS, He J (2007) Corticofugal modulation of acoustically induced fos expression in the rat auditory pathway. J Comp Neurol 501(4):509–525. doi:10.1002/cne.21249 PubMedGoogle Scholar
  177. Szymanski FD, Garcia-Lazaro JA, Schnupp JW (2009) Current source density profiles of stimulus-specific adaptation in rat auditory cortex. J Neurophysiol 102(3):1483–1490. doi:10.1152/jn.00240.2009 PubMedGoogle Scholar
  178. Taaseh N, Yaron A, Nelken I (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 6(8):e23369. doi:10.1371/journal.pone.0023369 PubMedCentralPubMedGoogle Scholar
  179. Thomas JM, Morse C, Kishline L, O’Brien-Lambert A, Simonton A, Miller KE, Covey E (2012) Stimulus-specific adaptation in specialized neurons in the inferior colliculus of the big brown bat, Eptesicus fuscus. Hear Res 291(1–2):34–40. doi:10.1016/j.heares.2012.06.004 PubMedGoogle Scholar
  180. Ulanovsky N, Las L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6(4):391–398. doi:10.1038/nn1032 PubMedGoogle Scholar
  181. Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24(46):10440–10453. doi:10.1523/JNEUROSCI.1905-04.2004 PubMedGoogle Scholar
  182. Umbricht D, Vyssotki D, Latanov A, Nitsch R, Lipp HP (2005) Deviance-related electrophysiological activity in mice: is there mismatch negativity in mice? Clin Neurophysiol 116(2):353–363. doi:10.1016/j.clinph.2004.08.015 PubMedGoogle Scholar
  183. van Zuijen TL, Simoens VL, Paavilainen P, Näätänen R, Tervaniemi M (2006) Implicit, intuitive, and explicit knowledge of abstract regularities in a sound sequence: an event-related brain potential study. J Cognitive Neurosci 18(8):1292–1303. doi:10.1162/jocn.2006.18.8.1292 Google Scholar
  184. Varela JA, Sen K, Gibson J, Fost J, Abbott LF, Nelson SB (1997) A quantitative description of short-term plasticity at excitatory synapses in layer 2/3 of rat primary visual cortex. J Neurosci 17(20):7926–7940PubMedGoogle Scholar
  185. Villa AE, Rouiller EM, Simm GM, Zurita P, de Ribaupierre Y, de Ribaupierre F (1991) Corticofugal modulation of the information processing in the auditory thalamus of the cat. Exp Brain Res 86(3):506–517PubMedGoogle Scholar
  186. Villa AE, Tetko IV, Dutoit P, De Ribaupierre Y, De Ribaupierre F (1999) Corticofugal modulation of functional connectivity within the auditory thalamus of rat, guinea pig and cat revealed by cooling deactivation. J Neurosci Methods 86(2):161–178PubMedGoogle Scholar
  187. Virtala P, Berg V, Kivioja M, Purhonen J, Salmenkivi M, Paavilainen P, Tervaniemi M (2011) The preattentive processing of major vs. minor chords in the human brain: an event-related potential study. Neurosci Lett 487(3):406–410. doi:10.1016/j.neulet.2010.10.066 PubMedGoogle Scholar
  188. von der Behrens W, Bauerle P, Kossl M, Gaese BH (2009) Correlating stimulus-specific adaptation of cortical neurons and local field potentials in the awake rat. J Neurosci 29(44):13837–13849. doi:10.1523/JNEUROSCI.3475-09.2009 PubMedGoogle Scholar
  189. Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17(4):423–429. doi:10.1016/j.conb.2007.07.001 PubMedCentralPubMedGoogle Scholar
  190. Watanabe T, Yanagisawa K, Kanzaki J, Katsuki Y (1966) Cortical efferent flow influencing unit responses of medial geniculate body to sound stimulation. Exp Brain Res 2(4):302–317PubMedGoogle Scholar
  191. Weedman DL, Ryugo DK (1996) Pyramidal cells in primary auditory cortex project to cochlear nucleus in rat. Brain Res 706(1):97–102PubMedGoogle Scholar
  192. Weinberger NM (2011) The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hear Res 274(1–2):61–74. doi:10.1016/j.heares.2010.03.093 PubMedCentralPubMedGoogle Scholar
  193. Weinberger NM, Bakin JS (1998) Research on auditory cortex plasticity. Science 280(5367):1174PubMedGoogle Scholar
  194. Weinberger NM, Javid R, Lepan B (1995) Heterosynaptic long-term facilitation of sensory-evoked responses in the auditory cortex by stimulation of the magnocellular medial geniculate body in guinea pigs. Behav Neurosci 109(1):10–17PubMedGoogle Scholar
  195. Wenstrup JJ, Larue DT, Winer JA (1994) Projections of physiologically defined subdivisions of the inferior colliculus in the mustached bat: targets in the medial geniculate body and extrathalamic nuclei. J Comp Neurol 346(2):207–236. doi:10.1002/cne.903460204 PubMedGoogle Scholar
  196. Wepsic JG (1966) Multimodal sensory activation of cells in the magnocellular medial geniculate nucleus. Exp Neurol 15(3):299–318PubMedGoogle Scholar
  197. Winer JA (2006) Decoding the auditory corticofugal systems. Hear Res 212(1–2):1–8PubMedGoogle Scholar
  198. Winer JA, Lee CC (2007) The distributed auditory cortex. Hear Res 229(1–2):3–13. doi:10.1016/j.heares.2007.01.017 PubMedCentralPubMedGoogle Scholar
  199. Winer JA, Morest DK (1983a) The medial division of the medial geniculate body of the cat: implications for thalamic organization. J Neurosci 3(12):2629–2651PubMedGoogle Scholar
  200. Winer JA, Morest DK (1983b) The neuronal architecture of the dorsal division of the medial geniculate body of the cat. A study with the rapid Golgi method. J Comp Neurol 221(1):1–30. doi:10.1002/cne.902210102 PubMedGoogle Scholar
  201. Winer JA, Prieto JJ (2001) Layer V in cat primary auditory cortex (AI): cellular architecture and identification of projection neurons. J Comp Neurol 434(4):379–412PubMedGoogle Scholar
  202. Winer JA, Wenstrup JJ (1994) Cytoarchitecture of the medial geniculate body in the mustached bat (Pteronotus parnellii). J Comp Neurol 346(2):161–182. doi:10.1002/cne.903460202 PubMedGoogle Scholar
  203. Winer JA, Saint Marie RL, Larue DT, Oliver DL (1996) GABAergic feedforward projections from the inferior colliculus to the medial geniculate body. Proc Natl Acad Sci USA 93(15):8005–8010PubMedCentralPubMedGoogle Scholar
  204. Winer JA, Kelly JB, Larue DT (1999) Neural architecture of the rat medial geniculate body. Hear Res 130(1–2):19–41PubMedGoogle Scholar
  205. Winer JA, Diehl JJ, Larue DT (2001) Projections of auditory cortex to the medial geniculate body of the cat. J Comp Neurol 430(1):27–55. doi:10.1002/1096-9861(20010129)430:1<27:AID-CNE1013>3.0.CO;2-8 PubMedGoogle Scholar
  206. Winer JA, Miller LM, Lee CC, Schreiner CE (2005) Auditory thalamocortical transformation: structure and function. Trends Neurosci 28(5):255–263. doi:10.1016/j.tins.2005.03.009 PubMedGoogle Scholar
  207. Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13(12):532–540. doi:10.1016/j.tics.2009.09.003 PubMedGoogle Scholar
  208. Xiao Z, Suga N (2002) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5(1):57–63. doi:10.1038/nn786nn786 PubMedGoogle Scholar
  209. Yaron A, Hershenhoren I, Nelken I (2012) Sensitivity to complex statistical regularities in rat auditory cortex. Neuron 76(3):603–615. doi:10.1016/j.neuron.2012.08.025 PubMedGoogle Scholar
  210. Yu YQ, Xiong Y, Chan YS, He J (2004) In vivo intracellular responses of the medial geniculate neurones to acoustic stimuli in anaesthetized guinea pigs. J Physiol 560(Pt 1):191–205. doi:10.1113/jphysiol.2004.067678 PubMedCentralPubMedGoogle Scholar
  211. Yu XJ, Xu XX, He S, He J (2009) Change detection by thalamic reticular neurons. Nat Neurosci 12(9):1165–1170. doi:10.1038/nn.2373 PubMedGoogle Scholar
  212. Zhang Z, Liu CH, Yu YQ, Fujimoto K, Chan YS, He J (2008) Corticofugal projection inhibits the auditory thalamus through the thalamic reticular nucleus. J Neurophysiol 99(6):2938–2945. doi:10.1152/jn.00002.2008 PubMedGoogle Scholar
  213. Zhao L, Liu Y, Shen L, Feng L, Hong B (2011) Stimulus-specific adaptation and its dynamics in the inferior colliculus of rat. Neuroscience 181:163–174. doi:10.1016/j.neuroscience.2011.01.060 PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Auditory Neurophysiology Unit, Laboratory for the Neurobiology of Hearing, Institute of Neuroscience of Castilla y LeónUniversity of SalamancaSalamancaSpain
  2. 2.Department of Cell Biology and Pathology, Faculty of MedicineUniversity of SalamancaSalamancaSpain

Personalised recommendations