Brain Topography

, Volume 27, Issue 4, pp 527–538 | Cite as

Deviance Detection Based on Regularity Encoding Along the Auditory Hierarchy: Electrophysiological Evidence in Humans

Review

Abstract

Detection of changes in the acoustic environment is critical for survival, as it prevents missing potentially relevant events outside the focus of attention. In humans, deviance detection based on acoustic regularity encoding has been associated with a brain response derived from the human EEG, the mismatch negativity (MMN) auditory evoked potential, peaking at about 100–200 ms from deviance onset. By its long latency and cerebral generators, the cortical nature of both the processes of regularity encoding and deviance detection has been assumed. Yet, intracellular, extracellular, single-unit and local-field potential recordings in rats and cats have shown much earlier (circa 20–30 ms) and hierarchically lower (primary auditory cortex, medial geniculate body, inferior colliculus) deviance-related responses. Here, we review the recent evidence obtained with the complex auditory brainstem response (cABR), the middle latency response (MLR) and magnetoencephalography (MEG) demonstrating that human auditory deviance detection based on regularity encoding—rather than on refractoriness—occurs at latencies and in neural networks comparable to those revealed in animals. Specifically, encoding of simple acoustic-feature regularities and detection of corresponding deviance, such as an infrequent change in frequency or location, occur in the latency range of the MLR, in separate auditory cortical regions from those generating the MMN, and even at the level of human auditory brainstem. In contrast, violations of more complex regularities, such as those defined by the alternation of two different tones or by feature conjunctions (i.e., frequency and location) fail to elicit MLR correlates but elicit sizable MMNs. Altogether, these findings support the emerging view that deviance detection is a basic principle of the functional organization of the auditory system, and that regularity encoding and deviance detection is organized in ascending levels of complexity along the auditory pathway expanding from the brainstem up to higher-order areas of the cerebral cortex.

Keywords

Mismatch negativity MMN Change detection Middle-latency response MLR Oddball Stimulus-specific adaptation SSA Inferior colliculus Frequency following response (FFR) 

References

  1. Alain C, Woods DL, Ogawa KH (1994) Brain indices of automatic pattern processing. Neuroreport 6:140–144PubMedCrossRefGoogle Scholar
  2. Alho K, Grimm S, Mateo-León S, Costa-Faidella J, Escera C (2012) Early processing of pitch in the human auditory system. Eur J Neurosci 36:2972–2978PubMedCrossRefGoogle Scholar
  3. Althen H, Grimm S, Escera C (2011) Fast detection of unexpected sound intensity decrements as revealed by human evoked potentials. PLoS One 6(12):e28522. doi:10.1371/journal.pone.0028522 PubMedCentralPubMedCrossRefGoogle Scholar
  4. Althen H, Grimm S, Escera C (2013) Simple and complex acoustic regularities are encoded at different levels of the auditory hierarchy. Eur J Neurosci. doi:10.1111/ejn.12346
  5. Anderson LA, Malmierca MS (2013) The effect of auditory cortical deactivation on stimulus-specific adaptation in the inferior colliculus of the rat. Eur J Neurosci 37:52–62PubMedCrossRefGoogle Scholar
  6. Antunes FM, Malmierca MS (2011) Effect of auditory cortex deactivation on stimulus-specific adaptation in the medial geniculate body. J Neurosci 31:17306–17316PubMedCrossRefGoogle Scholar
  7. Antunes FM, Nelken I, Covey E, Malmierca MS (2010) Stimulus-specific adaptation in the auditory thalamus of the anesthetized rat. PLoS One 5:e14071PubMedCentralPubMedCrossRefGoogle Scholar
  8. Astikainen P, Stefanics G, Nokia M, Lipponen A, Cong F et al (2011) Memory-based mismatch response to frequency changes in rats. PLoS One 6(9):e24208. doi:10.1371/journal.pone.0024208 PubMedCentralPubMedCrossRefGoogle Scholar
  9. Ayala YA, Malmierca MS (2013) Stimulus-specific adaptation and deviance detection in the inferior colliculus. Front Neural Circuits 6:89. doi:10.3389/fncir.2012.00089 PubMedCentralPubMedGoogle Scholar
  10. Ayala YA, Pérez-González D, Duque D, Nelken I, Malmierca MS (2013) Frequency discrimination and stimulus deviance in the inferior colliculus and cochlear nucleus. Front Neural Circuits 6:119. doi:10.3389/fncir.2012.00119 PubMedCentralPubMedGoogle Scholar
  11. Baldeweg T (2007) ERP repetition effects and mismatch negativity generation: a predictive coding perspective. J Psychophysiol 27:204–213CrossRefGoogle Scholar
  12. Bendixen A, Schröger E (2008) Memory trace formation for abstract auditory features and its consequences in different attentional contexts. Biol Psychol 78:231–241PubMedCrossRefGoogle Scholar
  13. Bendixen A, Roeber U, Schröger E (2007) Regularity extraction and application in dynamic auditory stimulus sequences. J Cogn Neurosci 19:1664–1677PubMedCrossRefGoogle Scholar
  14. Bendixen A, Prinz W, Horváth J, Trujillo-Barreto NJ, Schröger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41:1111–1119PubMedCrossRefGoogle Scholar
  15. Bendixen A, SanMiguel I, Schröger E (2012) Early electrophysiological indicators for predictive processing in audition: a review. Int J Psychophysiol 83:120–131PubMedCrossRefGoogle Scholar
  16. Borgmann C, Ross B, Draganova R, Pantev C (2001) Human auditory middle latency responses: influence of stimulus type and intensity. Hear Res 158:57–64PubMedCrossRefGoogle Scholar
  17. Cacciaglia R, Slabu L, Sanjuán A, Grimm S, Ventura-Campos N, Ávila C, Escera C (2013) Auditory deviance detection along the ascending auditory pathway: direct evidence from functional magnetic resonance imaging. 19th annual meeting of the organization for human brain mapping, abstract 3926Google Scholar
  18. Chandrasekaran B, Kraus N (2010) The scalp-recorded brainstem response to speech: neural origins and plasticity. Psychophysiology 47:236–246PubMedCentralPubMedCrossRefGoogle Scholar
  19. Cornella M, Leung S, Grimm S, Escera C (2012) Detection of simple and pattern regularity violations occurs at different levels of the auditory hierarchy. PLoS One 7:e43604PubMedCentralPubMedCrossRefGoogle Scholar
  20. Cornella M, Leung S, Grimm S, Escera C (2013) Regularity encoding and deviance detection of frequency modulated sweeps: human middle- and long-latency auditory evoked potentials. Psychophysiology. doi:10.1111/psyp.12137 PubMedGoogle Scholar
  21. Costa-Faidella J, Baldeweg T, Grimm S, Escera C (2011a) Interactions between “what” and “when” in the auditory system: temporal predictability enhances repetition suppression. J Neurosci 31:18590–18597PubMedCrossRefGoogle Scholar
  22. Costa-Faidella J, Grimm S, Slabu L, Díaz-Santaella F, Escera C (2011b) Multiple time scales of adaptation in the auditory system as revealed by human evoked potentials. Psychophysiology 48:774–783PubMedCrossRefGoogle Scholar
  23. Cowan N, Winkler I, Teder W, Näätänen R (1993) Memory prerequisites of the mismatch negativity in the auditory event-related potential (ERP). J Exp Psychol Hum Percept Perform 19:909–921Google Scholar
  24. Deouell LY (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21:188–203CrossRefGoogle Scholar
  25. Deouell LY, Parnes A, Pickard N, Knight RT (2006) Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity. Eur J Neurosci 24:1488–1494PubMedCrossRefGoogle Scholar
  26. Domínguez-Borràs J, Garcia-Garcia M, Escera C (2008) Emotional context enhances auditory novelty processing: behavioural and electrophysiological evidence. Eur J Neurosci 28:1199–1206PubMedCrossRefGoogle Scholar
  27. Duque D, Perez-Gonzalez D, Ayala YA, Palmer AR, Malmierca MS (2012) Topographic distribution, frequency and level dependence of stimulus-specific adaptation in the inferior colliculus of the rat. J Neurosci 32:17762–17774PubMedCrossRefGoogle Scholar
  28. Escera C, Corral MJ (2007) Role of mismatch negativity and novelty-P3 in involuntary auditory attention. J Psychophysiol 21:251–264CrossRefGoogle Scholar
  29. Escera C, Malmierca MS (2013) The auditory novelty system: an attempt to integrate human and animal research. Psychophysiology. doi:10.1111/psyp.12156
  30. Escera C, Alho K, Winkler I, Näätänen R (1998) Neural mechanisms of involuntary attention to acoustic novelty and change. J Cogn Neurosci 10:590–604PubMedCrossRefGoogle Scholar
  31. Escera C, Alho K, Schröger E, Winkler I (2000a) Involuntary attention and distractibility as evaluated with event-related brain potentials. Audiol Neurootol 5:151–166PubMedCrossRefGoogle Scholar
  32. Escera C, Yago E, Polo MD, Grau C (2000b) The individual replicability of mismatch negativity at short and long inter-stimulus intervals. Clin Neurophysiol 111:546–551PubMedCrossRefGoogle Scholar
  33. Escera C, Yago E, Alho K (2001) Electrical responses reveal the temporal dynamics of brain events during involuntary attention switching. Eur J Neurosci 14:877–883PubMedCrossRefGoogle Scholar
  34. Escera C, Yago E, Corral MJ, Corbera S, Nuñez MI (2003) Attention capture by auditory significant stimuli: semantic analysis follows attention switching. Eur J Neurosci 18:2408–2412PubMedCrossRefGoogle Scholar
  35. Garrido MI, Kilner JM, Stephan KE, Friston KJ (2009) The mismatch negativity: a review of the underlying mechanisms. Clin Neurophysiol 120:453–463PubMedCentralPubMedCrossRefGoogle Scholar
  36. Giard MH, Perrin F, Pernier J, Bouchet P (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640PubMedCrossRefGoogle Scholar
  37. Gomes H, Bernstein R, Ritter W, Vaughan HG Jr, Miller J (1997) Storage of feature conjunctions in transient auditory memory. Psychophysiology 34:712–716PubMedCrossRefGoogle Scholar
  38. Grimm S, Escera C (2012) Auditory deviance detection revisited: evidence for a hierarchical novelty system. Int J Psychophysiol 85:88–92PubMedCrossRefGoogle Scholar
  39. Grimm S, Escera C, Slabu LM, Costa-Faidella J (2011) Electrophysiological evidence for the hierarchical organization of auditory change detection in the human brain. Psychophysiology 48:377–384PubMedCrossRefGoogle Scholar
  40. Grimm S, Recasens M, Althen H, Escera C (2012) Ultrafast tracking of sound location changes as revealed by human auditory evoked potentials. Biol Psychol 89:232–239PubMedCrossRefGoogle Scholar
  41. Haenschel C, Vernon DJ, Dwivedi P, Gruzelier JH, Baldeweg T (2005) Event-related brain potential correlates of human auditory sensory memory-trace formation. J Neurosci 25:10494–10501PubMedCrossRefGoogle Scholar
  42. Jääskeläinen IP, Ahveninen J, Bonmassar G et al (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 17:6809–6814CrossRefGoogle Scholar
  43. Jacobsen T, Schröger E (2001) Is there pre-attentive memory-based comparison of pitch? Psychophysiology 38:723–727PubMedCrossRefGoogle Scholar
  44. Jacobsen T, Schröger E (2003) Measuring duration mismatch negativity. Clin Neurophysiol 114:1133–1143PubMedCrossRefGoogle Scholar
  45. Jacobsen T, Horenkamp T, Schröger E (2003) Preattentive memory-based comparison of sound intensity. Audiol Neurootol 8:338–346PubMedCrossRefGoogle Scholar
  46. King C, Mcgee T, Rubel EW, Nicol T, Kraus N (1995) Acoustic features and acoustic changes are represented by different central pathways. Hear Res 85:45–52PubMedCrossRefGoogle Scholar
  47. Knight RT (1996) Contribution of human hippocampal region to novelty detection. Nature 383:256–259PubMedCrossRefGoogle Scholar
  48. Kraus N, McGee T, Littman T, Nicol T, King C (1994a) Nonprimary auditory thalamic representation of acoustic change. J Neurophysiol 72:1270–1277PubMedGoogle Scholar
  49. Kraus N et al (1994b) Discrimination of speech-like contrasts in the auditory thalamus and cortex. J Acoust Soc Am 96:2758–2768PubMedCrossRefGoogle Scholar
  50. Leung S, Cornella M, Grimm S, Escera C (2012) Is fast auditory change detection feature-specific? An electrophysiological study in humans. Psychophysiology 49:933–942PubMedCrossRefGoogle Scholar
  51. Leung S, Recasens M, Grimm S, Escera C (2013) Electrophysiological index of acoustic temporal regularity violation. Clin Neurophysiol. doi:10.1016/j.clinph.2013.06.001 PubMedGoogle Scholar
  52. Makeig S (1990) A dramatic increase in the auditory middle latency response at very slow rates. In: Brunia CHM, Gaillard AWK, Kok A (eds) Psychophysiological brain research. University Press, Tilburg, pp 60–64Google Scholar
  53. Mäkelä JP, Salmelin R, Kotila M, Salonen O, Laaksonen R, Hokkanen L, Hari R (1998) Modification of neuromagnetic cortical signals by thalamic infarctions. Electroencephalogr Clin Neurophysiol 106:433–443PubMedCrossRefGoogle Scholar
  54. Malmierca MS, Cristaudo S, Perez-Gonzalez D, Covey E (2009) Stimulus-specific adaptation in the inferior colliculus of the anesthetized rat. J Neurosci 29:5483–5493PubMedCentralPubMedCrossRefGoogle Scholar
  55. Martínez-Moreno E, Llamas A, Avendaño C, Renes E, Reinoso-Suárez F (1987) General plan of the thalamic projections to the prefrontal cortex in the cat. Brain Res 07:17–26CrossRefGoogle Scholar
  56. May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47:66–122PubMedCrossRefGoogle Scholar
  57. Näätänen R (1990) The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288CrossRefGoogle Scholar
  58. Näätänen R (1992) Attention and brain function. Lawrence Erlbaum Associates, HillsdaleGoogle Scholar
  59. Näätänen R, Escera C (2000) Mismatch negativity (MMN): clinical and other applications. Audiol Neurootol 5:105–110PubMedCrossRefGoogle Scholar
  60. Näätänen R, Michie P (1979) Early selective-attention effects on the evoked potential: a critical review and reinterpretation. Biol Psychol 8:81–136PubMedCrossRefGoogle Scholar
  61. Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329CrossRefGoogle Scholar
  62. Näätänen R, Pakarinen S, Rinne T, Takegata R (2004) The mismatch negativity (MMN): towards the optimal paradigm. Clin Neurophysiol 115:140–144PubMedCrossRefGoogle Scholar
  63. Näätänen R, Paavilainen P, Rinne T, Alho K (2007) The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol 118:2544–2590PubMedCrossRefGoogle Scholar
  64. Näätänen R, Kujala T, Kreegippu K, Carlson S, Escera C, Baldeweg T, Curtis P (2011) The mismatch negativity: an index of cognitive decline in neuropsychiatric and neurological diseases and in aging. Brain 134:3432–3450CrossRefGoogle Scholar
  65. Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in aging and different clinical conditions. Clin Neurophysiol 123:424–458PubMedCrossRefGoogle Scholar
  66. Nelken I, Ulanovsky N (2007) Mismatch negativity and stimulus-specific adaptation in animal models. J Psychophysiol 21:214–223CrossRefGoogle Scholar
  67. Nunez PL, Srinivasan R (2006) Electric fields of the brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  68. Paavilainen P (2013) The mismatch-negativity (MMN) component of the auditory event-related potential to violations of abstract regularities: a review. Int J Psychophysiol 88:109–123PubMedCrossRefGoogle Scholar
  69. Pérez-González D, Covey E, Malmierca MS (2005) Novelty detector neurons in the mammalian auditory midbrain. Eur J Neurosci 22:2879–2885PubMedCrossRefGoogle Scholar
  70. Pérez-González D, Hernandez O, Covey E, Malmierca MS (2012) GABA(A)-mediated inhibition modulates stimulus-specific adaptation in the inferior colliculus. PLoS One 7:e34297PubMedCentralPubMedCrossRefGoogle Scholar
  71. Picton TW (2010) Human auditory evoked potentials. Plural Publishing, San DiegoGoogle Scholar
  72. Picton TW, Hillyard SA, Krausz HI, Galambos R (1974) Human auditory evoked potentials. I: evaluation of components. Electroencephalogr Clin Neurophysiol 36:179–190PubMedCrossRefGoogle Scholar
  73. Picton TW, Alain C, Otten L, Ritter W, Achim A (2000) Mismatch negativity: different water in the same river. Audiol Neurootol 5:111–139PubMedCrossRefGoogle Scholar
  74. Puschmann S, Sandmann P, Ahrens J, Thorne J, Weerda R, Klump G, Debener S, Thiel CM (2013) Electrophysiological correlates of auditory change detection and change deafness in complex auditory scenes. Neuroimage 75:155–164PubMedCrossRefGoogle Scholar
  75. Recasens M, Grimm S, Capilla A, Nowak R, Escera C (2012) Two sequential processes of change detection in hierarchically ordered areas of the human auditory cortex. Cereb Cortex. doi:10.1093/cercor/bhs295 PubMedGoogle Scholar
  76. Recasens M, Grimm S, Leung S, Wollbrink A, Pantev C, Escera C (2013) Pitches & patterns: distinct encoding mechanisms for different acoustic regularity levels. 19th annual meeting of the organization for human brain mapping, abstract 3940Google Scholar
  77. Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. Neuroimage 12:14–19PubMedCrossRefGoogle Scholar
  78. Ruhnau P, Herrmann B, Schröger E (2012) Finding the right control: the mismatch negativity under investigation. Clin Neurophysiol 123:507–512PubMedCrossRefGoogle Scholar
  79. Ruusuvirta T, Penttonen M, Korhonen T (1998) Auditory cortical event-related potentials to pitch deviances in rats. Neurosci Lett 248:45–48PubMedCrossRefGoogle Scholar
  80. SanMiguel I, Corral MJ, Escera C (2008) When loading working memory reduces distraction: behavioral and electrophysiological evidence from an auditory-visual distraction paradigm. J Cogn Neurosci 20:1131–1145PubMedCrossRefGoogle Scholar
  81. Schröger E (1996) Neural mechanism for involuntary attention shifts to changes in auditory stimulation. J Cogn Neurosci 8:527–539PubMedCrossRefGoogle Scholar
  82. Schröger E, Wolff C (1996) Mismatch response to changes in sound location. Neuroreport 7:3005–3008PubMedCrossRefGoogle Scholar
  83. Schröger E, Wolff C (1998) Behavioral and electrophysiological effects of task-irrelevant sound change: a new distraction paradigm. Cogn Brain Res 7:71–87CrossRefGoogle Scholar
  84. Skoe E, Kraus N (2010) Auditory brainstem response to complex sounds: a tutorial. Ear Hear 31:302–324PubMedCentralPubMedCrossRefGoogle Scholar
  85. Slabu LM, Escera C, Grimm S, Costa-Faidella J (2010) Early change detection in humans as revealed by auditory brainstem and middle-latency evoked potentials. Eur J Neurosci 32:859–865PubMedCrossRefGoogle Scholar
  86. Slabu L, Grimm S, Escera C (2012) Novelty detection in the human auditory brainstem. J Neurosci 32:1447–1452PubMedCrossRefGoogle Scholar
  87. Snyder JS, Alain C (2007) Toward a neurophysiological theory of auditory stream segregation. Psychol Bull 133:780–799PubMedCrossRefGoogle Scholar
  88. Sonnadara RR, Alain C, Trainor LJ (2006) Occasional changes in sound location enhance middle latency evoked responses. Brain Res 1076:187–192PubMedCrossRefGoogle Scholar
  89. Stochard JJ, Stochard EJ, Sharbrough FW (1979) Brain-steam auditory-evoked responses. Arch Neurol 36:597–598Google Scholar
  90. Suga N, Xiao Z, Ma X, Ji W (2002) Plasticity and corticofugal modulation for hearing in adult animals. Neuron 36:9–18PubMedCrossRefGoogle Scholar
  91. Taaseh N, Yaron A, Nelken (2011) Stimulus-specific adaptation and deviance detection in the rat auditory cortex. PLoS One 6(8):e23369PubMedCentralPubMedCrossRefGoogle Scholar
  92. Thornton C, Heneghan CP, James MF, Jones JG (1984) Effects of halothane or enflurane with controlled ventilation on auditory evoked potentials. Br J Anaesth 56:315–323PubMedCrossRefGoogle Scholar
  93. Tse CY, Penney TB (2008) On the functional role of temporal and frontal cortex activation in passive detection of auditory deviance. Neuroimage 41:1462–1470PubMedCrossRefGoogle Scholar
  94. Ulanovsky N, La L, Nelken I (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–398PubMedCrossRefGoogle Scholar
  95. Ulanovsky N, Las L, Farkas D, Nelken I (2004) Multiple time scales of adaptation in auditory cortex neurons. J Neurosci 24:10440–10453PubMedCrossRefGoogle Scholar
  96. Widmann A, Kujala T, Tervaniem M, Kujala A, Schröger E (2004) From symbols to sounds: visual symbolic information activates sound representations. Psychophysiology 41:709–715PubMedCrossRefGoogle Scholar
  97. Winkler I (1993) Mismatch negativity: an event-related brain potential measure of auditory sensory memory traces. Doctor of philosophy thesis, University of Helsinki, HelsinkiGoogle Scholar
  98. Winkler I, Denham SL, Nelken I (2009) Modeling the auditory scene: predictive regularity representations and perceptual objects. Trends Cogn Sci 13:532–540PubMedCrossRefGoogle Scholar
  99. Woods DL, Alain C, Covarrubias D, Zaidel O (1995) Middle latency auditory evoked potentials to tones of different frequency. Hear Res 85:69–75PubMedCrossRefGoogle Scholar
  100. Yago E, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. Neuroreport 12:2583–2587PubMedCrossRefGoogle Scholar
  101. Yvert B, Crouzeix A, Bertrand O, Seither-Preisler A, Pantev C (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–423PubMedCrossRefGoogle Scholar
  102. Yvert B, Fischer C, Bertrand O, Pernier J (2005) Localization of human supratemporal auditory areas from intracerebral auditory evoked potentials using distributed source models. Neuroimage 28:140–153PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Institute for Brain, Cognition and Behavior (IR3C)University of BarcelonaBarcelonaSpain
  2. 2.Cognitive Neuroscience Research Group, Department of Psychiatry and Clinical PsychobiologyUniversity of BarcelonaBarcelonaSpain

Personalised recommendations