Brain Topography

, Volume 27, Issue 4, pp 553–564 | Cite as

The Five Myths of MMN: Redefining How to Use MMN in Basic and Clinical Research

  • E. S. Sussman
  • S. Chen
  • J. Sussman-Fort
  • E. Dinces
Review

Abstract

The goal of this review article is to redefine what the mismatch negativity (MMN) component of event-related potentials reflects in auditory scene analysis, and to provide an overview of how the MMN serves as a valuable tool in Cognitive Neuroscience research. In doing so, some of the old beliefs (five common ‘myths’) about MMN will be dispelled, such as the notion that MMN is a simple feature discriminator and that attention itself modulates MMN elicitation. A revised description of what MMN truly reflects will be provided, which includes a principal focus onto the highly context-dependent nature of MMN elicitation and new terminology to discuss MMN and attention. This revised framework will help clarify what has been a long line of seemingly contradictory results from studies in which behavioral ability to hear differences between sounds and passive elicitation of MMN have been inconsistent. Understanding what MMN is will also benefit clinical research efforts by providing a new picture of how to design appropriate paradigms suited to various clinical populations.

Keywords

Mismatch negativity (MMN) Attention Event-related potentials (ERPs) Auditory scene analysis Context effects 

References

  1. Aaltonen O, Niemi P, Nyrke T, Tuhkanen M (1987) Event-related brain potentials and the perception of a phonetic continuum. Biol Psychol 24(3):197–207PubMedGoogle Scholar
  2. Aaltonen O, Tuomainen J, Laine M, Niemi P (1993) Cortical differences in tonal versus vowel processing as revealed by an ERP component called mismatch negativity (MMN). Brain Lang 44(2):139–152PubMedGoogle Scholar
  3. Alho K, Huotilainen M, Tiitinen H, Ilmoniemi RJ, Knuutila J, Näätänen R (1993) Memory-related processing of complex sound patterns in human auditory cortex: a MEG study. NeuroReport 4(4):391–394PubMedGoogle Scholar
  4. Atienza M, Cantero JL, Grau C, Gomez C, Dominguez-Marin E, Escera C (2003) Effects of temporal encoding on auditory object formation: a mismatch negativity study. Brain Res Cogn Brain Res 16(3):359–371PubMedGoogle Scholar
  5. Bendixen A, Jones SJ, Klump G, Winkler I (2010) Probability dependence and functional separation of the object-related and mismatch negativity event-related potential components. Neuroimage 50(1):285–290PubMedGoogle Scholar
  6. Bishop DV, Hardiman MJ (2010) Measurement of mismatch negativity in individuals: a study using single-trial analysis. 47(4):697–705Google Scholar
  7. Bonte ML, Mitterer H, Zellagui N, Poelmans H, Blomert L (2005) Auditory cortical tuning to statistical regularities in phonology. Clin Neurophysiol 116(12):2765–2774PubMedGoogle Scholar
  8. Broadbent DE (1958) Perception and communication. Pergamon Press Ltd, LondonGoogle Scholar
  9. Brunellière A, Dufour S, Nguyen N (2011) Regional differences in the listener’s phonemic inventory affect semantic processing: a mismatch negativity (MMN) study. Brain Lang 117(1):45–51PubMedGoogle Scholar
  10. Chen S, Sussman ES (2013) Context effects on auditory distraction. Biol Psychol 94(2):297–309PubMedGoogle Scholar
  11. Colin C, Radeau M, Soquet A, Demolin D, Colin F, Deltenre P (2002) Mismatch negativity evoked by the McGurk-MacDonald effect: a phonetic representation within short-term memory. Clin Neurophysiol 113(4):495–506PubMedGoogle Scholar
  12. Cornell SA, Lahiri A, Eulitz C (2011) “What you encode is not necessarily what you store”: evidence for sparse feature representations from mismatch negativity. Brain Res 1394:79–89PubMedGoogle Scholar
  13. Czigler I (2014) Visual mismatch negativity and categorization. Brain Topogr, in pressGoogle Scholar
  14. Dalebout SD, Stack JW (1999) Mismatch negativity to acoustic differences not differentiated behaviorally. J Am Acad Audiol 10(7):388–399PubMedGoogle Scholar
  15. Davids N, van den Brink D, van Turennout M, Mitterer H, Verhoeven L (2009) Towards neurophysiological assessment of phonemic discrimination: context effects of the mismatch negativity. Clin Neurophysiol 120(6):1078–1086PubMedGoogle Scholar
  16. Deguchi C, Chobert J, Brunellière A, Nguyen N, Colombo L, Besson M (2010) Pre-attentive and attentive processing of French vowels. Brain Res 1366:149–161PubMedGoogle Scholar
  17. Dehaene-Lambertz G, Dupoux E, Gout A (2000) Electrophysiological correlates of phonological processing: a cross-linguistic study. J Cogn Neurosci 12(4):635–647PubMedGoogle Scholar
  18. DeSanctis P, Ritter W, Molholm S, Kelly SP, Foxe JJ (2008) Auditory scene analysis: the interaction of stimulation rate and frequency separation on pre-attentive grouping. Eur J Neurosci 27(5):127–1276Google Scholar
  19. Deutsch JA, Deutsch D (1963) Attention: some theoretical considerations. Psychol Rev 70:80–90PubMedGoogle Scholar
  20. Díaz B, Baus C, Escera C, Costa A, Sebastián-Gallés N (2008) Brain potentials to native phoneme discrimination reveal the origin of individual differences in learning the sounds of a second language. Proc Natl Acad Sci USA 105(42):16083–16088PubMedCentralPubMedGoogle Scholar
  21. Dyson BJ, Alain C, He Y (2005) Effects of visual attentional load on low-level auditory scene analysis. Cogn Affect Behav Neurosci 5(3):319–338PubMedGoogle Scholar
  22. Froyen D, Van Atteveldt N, Bonte M, Blomert L (2008) Cross-modal enhancement of the MMN to speech-sounds indicates early and automatic integration of letters and speech-sounds. Neurosci Lett 430(1):23–28PubMedGoogle Scholar
  23. Gao S, Hu J, Gong D, Chen S, Kendrick KM, Yao D (2012) Integration of consonant and pitch processing as revealed by the absence of additivity in mismatch negativity. PLoS ONE 7(5):e38289PubMedCentralPubMedGoogle Scholar
  24. Gomes H, Berstein R, Ritter W, Vaughan HG Jr, Miller J (1997) Storage of feature conjunctions in transient auditory memory. Psychophysiology 34(6):712–716PubMedGoogle Scholar
  25. Gomes H, Molholm S, Ritter W, Kurtzberg D, Cowan N, Vaughan HG Jr (2000) Mismatch negativity in children and adults, and effects of an attended task. Psychophysiology 37(6):807–816PubMedGoogle Scholar
  26. Grimm S, Widmann A, Schröger E (2004) Differential processing of duration changes within short and long sounds in humans. Neurosci Lett 356(2):83–86PubMedGoogle Scholar
  27. Hasting AS, Winkler I, Kotz SA (2008) Early differential processing of verbs and nouns in the human brain as indexed by event-related brain potentials. Eur J Neurosci 27(6):1561–1565PubMedGoogle Scholar
  28. Hillyard SA, Hink RF, Schwent VL, Picton TW (1973) Electrical signs of selective attention in the human brain. Science 182(4108):177–180PubMedGoogle Scholar
  29. Hisagi M, Shafer VL, Strange W, Sussman ES (2010) Perception of a Japanese vowel length contrast by Japanese and American English listeners: behavioral and electrophysiological measures. Brain Res 1360:89–105PubMedCentralPubMedGoogle Scholar
  30. Hung J, Jones SJ, VazPato M (2001) Scalp potentials to pitch change in rapid tone sequences. A correlate of sequential stream segregation. Exp Brain Res 140(1):56–65PubMedGoogle Scholar
  31. Jacobsen T, Schröger E (2004) Input to verbal working memory: reattentive construction of the central speech representation. Exp Psychol 51(4):231–239PubMedGoogle Scholar
  32. Jakoby H, Goldstein A, Faust M (2011) Electrophysiological correlates of speech perception mechanisms and individual differences in second language attainment. Psychophysiology 48(11):1517–1531PubMedGoogle Scholar
  33. Javitt DC, Grochowski S, Shelley AM, Ritter W (1998) Impaired mismatch negativity (MMN) generation in schizophrenia as a function of stimulus deviance, probability, and interstimulus/interdeviant interval. Electroencephalogr Clin Neurophysiol 108(2):143–153PubMedGoogle Scholar
  34. Koelsch S, Gunter TC, Wittfoth M, Sammler D (2005) Interaction between syntax processing in language and in music: an ERP Study. J Cogn Neurosci 17(10):1565–1577PubMedGoogle Scholar
  35. Kraus N, McGee T, Carrell TD, Sharma A (1995) Neurophysiologic bases of speech discrimination. Ear Hear 16(1):19–37PubMedGoogle Scholar
  36. Kraus N, McGee TJ, Carrell TD, Zecker SG, Nicol TG, Koch DB (1996) Auditory neurophysiologic responses and discrimination deficits in children with learning problems. Science 273:971–973PubMedGoogle Scholar
  37. Kujala T, Näätänen R (2001) The mismatch negativity in evaluating central auditory dysfunction in dyslexia. Neurosci Biobehav Rev 25:535–543PubMedGoogle Scholar
  38. Kujala T, Halmetoja J, Näätänen R, Alku P, Lyytinen H, Sussman E (2006) Speech- and sound-segmentation in dyslexia: evidence for a multiple-level cortical impairment. Eur J Neurosci 24(8):2420–2427PubMedGoogle Scholar
  39. Lee CY, Yen HL, Yeh PW, Lin WH, Cheng YY, Tzeng YL, Wu HC (2012) Mismatch responses to lexical tone, initial consonant, and vowel in Mandarin-speaking preschoolers. Neuropsychologia 50(14):3228–3239PubMedGoogle Scholar
  40. Lepistö T, Kuitunen A, Sussman E, Saalasti S, Jansson-Verkasalo E, Nieminen-von Wendt T, Kujala T (2009) Auditory stream segregation in children with Asperger syndrome. Biol Psychol 82(3):301–307PubMedCentralPubMedGoogle Scholar
  41. Lipski SC, Escudero P, Benders T (2012) Language experience modulates weighting of acoustic cues for vowel perception: an event-related potential study. Psychophysiology 49(5):638–650PubMedGoogle Scholar
  42. List A, Justus T, Robertson LC, Bentin S (2007) A mismatch negativity study of local-global auditory processing. Brain Res 1153:122–133PubMedCentralPubMedGoogle Scholar
  43. Maiste AC, Wiens AS, Hunt MJ, Scherg M, Picton TW (1995) Event-related potentials and the categorical perception of speech sounds. Ear Hear 16(1):68–90PubMedGoogle Scholar
  44. May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47(1):66–122PubMedGoogle Scholar
  45. Miglietta S, Grimaldi M, Calabrese A (2013) Conditioned allophony in speech perception: an ERP study. Brain Lang 126(3):285–290PubMedGoogle Scholar
  46. Morlet D, Fischer C (2014) MMN and novelty P3 in coma and other altered states of consciousness: a review. Brain Topogr, in pressGoogle Scholar
  47. Müller D, Schröger E (2007) Temporal grouping affects the automatic processing of deviant sounds. Biol Psychol 74(3):358–364PubMedGoogle Scholar
  48. Müller D, Widmann A, Schröger E (2005) Auditory streaming affects the processing of successive deviant and standard sounds. Psychophysiology 42:668–676PubMedGoogle Scholar
  49. Näätänen R (1991) Mismatch negativity outside strong attentional focus: a commentary on Woldorff et al. (1991). Psychophysiology 28(4):478–484PubMedGoogle Scholar
  50. Näätänen R (1992) Attention and brain function. Erlbaum, HillsdaleGoogle Scholar
  51. Näätänen R (2003) Mismatch negativity: clinical research and possible applications. Int J Psychophysiol 48:179–188PubMedGoogle Scholar
  52. Näätänen R, Gaillard AWK, Mäntysalo S (1978) Early selective-attention effect on evoked potential reinterpreted. Acta Psychol 42:313–329Google Scholar
  53. Näätänen R, Paavilainen P, Tiitinen H, Jiang D, Alho K (1993) Attention and mismatch negativity. Psychophysiology 30(5):436–450PubMedGoogle Scholar
  54. Nager W, Teder-Sälejärvi W, Kunze S, Münte TF (2003) Preattentive evaluation of multiple perceptual streams in human audition. NeuroReport 14(6):871–874PubMedGoogle Scholar
  55. Neisser U (1967) Cognitive psychology. Appleton-Century-Crofts, New YorkGoogle Scholar
  56. Nenonen S, Shestakova A, Huotilainen M, Näätänen R (2005) Speech-sound duration processing in a second language is specific to phonetic categories. Brain Lang 92(1):26–32PubMedGoogle Scholar
  57. Novak GP, Ritter W, Vaughan HG Jr, Wiznitzer ML (1990) Differentiation of negative event-related potentials in an auditory discrimination task. Electroencephalogr Clin Neurophysiol 75(4):255–275PubMedGoogle Scholar
  58. Novak G, Ritter W, Vaughan HG Jr (1992) Mismatch detection and the latency of temporal judgments. Psychophysiology 29(4):398–411PubMedGoogle Scholar
  59. Paavilainen P, Tiitinen H, Alho K, Näätänen R (1993) Mismatch negativity to slight pitch changes outside strong attentional focus. Biol Psychol 37(1):23–41PubMedGoogle Scholar
  60. Paavilainen P, Jaramillo M, Näätänen R, Winkler I (1999) Neuronal populations in the human brain extracting invariant relationships from acoustic variance. Neurosci Lett 265(3):179–182PubMedGoogle Scholar
  61. Partanen E, Vainio M, Kujala T, Huotilainen M (2011) Linguistic multifeature MMN paradigm for extensive recording of auditory discrimination profiles. Psychophysiology 48(10):1372–1380PubMedGoogle Scholar
  62. Peltola MS, Tamminen H, Toivonen H, Kujala T, Näätänen R (2012) Different kinds of bilinguals: different kinds of brains: the neural organization of two languages in one brain. Brain Lang 121(3):261–266PubMedGoogle Scholar
  63. Perez VB, Woods SW, Roach BJ, Ford JM, McGlashan TH, Srihari VH, Mathalon DH (2013). Automatic Auditory Processing Deficits in Schizophrenia and Clinical High-Risk Patients: Forecasting Psychosis Risk with Mismatch Negativity. Biol Psychiatry, in pressGoogle Scholar
  64. Pulvermüller F, Shtyrov Y (2006) Language outside the focus of attention: the mismatch negativity as a tool for studying higher cognitive processes. Prog Neurobiol 79(1):49–71PubMedGoogle Scholar
  65. Pulvermüller F, Shtyrov Y, Kujala T, Näätänen R (2004) Word-specific cortical activity as revealed by the mismatch negativity. Psychophysiology 41(1):106–112PubMedGoogle Scholar
  66. Rahne T, Böckmann-Barthel M (2009) Visual cues release the temporal coherence of auditory objects in auditory scene analysis. Brain Res 1300:125–134PubMedGoogle Scholar
  67. Rahne T, Sussman E (2009) Neural representations of auditory input accommodate to the context in a dynamically changing acoustic environment. Eur J Neurosci 29(1):205–211PubMedCentralPubMedGoogle Scholar
  68. Rahne T, Böckmann M, von Specht H, Sussman E (2007) Visual cues can modulate integration and segregation of objects in auditory scene analysis. Brain Res 1144:127–135PubMedCentralPubMedGoogle Scholar
  69. Reiche M, Hartwigsen G, Widmann A, Saur D, Schröger E, Bendixen A (2013) Involuntary attentional capture by speech and non-speech deviations: a combined behavioral-event-related potential study. Brain Res 1490:153–160PubMedGoogle Scholar
  70. Ritter W, Sussman E, Molholm S (2000) Evidence that the mismatch negativity system works on the basis of objects. NeuroReport 11(1):61–63PubMedGoogle Scholar
  71. Saarinen J, Paavilainen P, Schöger E, Tervaniemi M, Näätänen R (1992) Representation of abstract attributes of auditory stimuli in the human brain. NeuroReport 3(12):1149–1451PubMedGoogle Scholar
  72. Sams M, Alho K, Näätänen R (1983) Sequential effects on the ERP in discriminating two stimuli. Biol Psychol 17(1):41–58PubMedGoogle Scholar
  73. Sams M, Paavilainen P, Alho K, Näätänen R (1985) Auditory frequency discrimination and event-related potentials. Electroencephalogr Clin Neurophysiol 62(6):437–448PubMedGoogle Scholar
  74. Savela J, Kujala T, Tuomainen J, Ek M, Aaltonen O, Näätänen R (2003) The mismatch negativity and reaction time as indices of the perceptual distance between the corresponding vowels of two related languages. Brain Res Cogn Brain Res 16(2):250–256PubMedGoogle Scholar
  75. Schöger E (1995) Processing of auditory deviants with changes in one versus two stimulus dimensions. Psychophysiology 32(1):55–65Google Scholar
  76. Schöger E (1996) The influence of stimulus intensity and inter-stimulus interval on the detection of pitch and loudness changes. Electroencephalogr Clin Neurophysiol 100(6):517–526Google Scholar
  77. Schöger E, Näätänen R, Paavilainen P (1992) Event-related potentials reveal how non-attended complex sound patterns are represented by the human brain. Neurosci Lett 146(2):183–186Google Scholar
  78. Schöger E, Paavilainen P, Näätänen R (1994) Mismatch negativity to changes in a continuous tone with regularly varying frequencies. Electroencephalogr Clin Neurophysiol 92(2):140–147Google Scholar
  79. Shafer VL, Schwartz RG, Kurtzberg D (2004) Language-specific memory traces of consonants in the brain. Brain Res Cogn Brain Res 18(3):242–254PubMedGoogle Scholar
  80. Sharma A, Dorman MF (1998) Exploration of the perceptual magnet effect using the mismatch negativity auditory evoked potential. J Acoust Soc Am 104(1):511–517PubMedGoogle Scholar
  81. Sharma A, Kraus N, McGee T, Carrell T, Nicol T (1993) Acoustic versus phonetic representation of speech as reflected by the mismatch negativity event-related potential. Electroencephalogr Clin Neurophysiol 88(1):64–71PubMedGoogle Scholar
  82. Shtyrov Y, Pulvermüller F (2002) Neurophysiological evidence of memory traces for words in the human brain. NeuroReport 13(4):521–525PubMedGoogle Scholar
  83. Sokolov EN (1963) Higher nervous functions: the orienting reflex. Annu Rev Phsyiol 25:545–580Google Scholar
  84. Sonnadara RR, Alain C, Trainor LJ (2006) Effects of spatial separation and stimulus probability on the event-related potentials elicited by occasional changes in sound location. Brain Res 1071(1):175–185PubMedGoogle Scholar
  85. Sorokin A, Alku P, Kujala T (2010) Change and novelty detection in speech and non-speech sound streams. Brain Res 23(1327):77–90Google Scholar
  86. Squires KC, Squires NK, Hillyard SA (1975) Vertex evoked potentials in a rating scale detection task: relation to signal probability. Behav Biol 13:21–34PubMedGoogle Scholar
  87. Steinberg J, Truckenbrodt H, Jacobsen T (2010) Preattentive phonotactic processing as indexed by the mismatch negativity. J Cogn Neurosci 22(10):2174–2185PubMedGoogle Scholar
  88. Stekelenburg JJ, Vroomen J (2012) Electrophysiological evidence for a multisensory speech-specific mode of perception. Neuropsychologia 50(7):1425–1431PubMedGoogle Scholar
  89. Sussman E (2005) Integration and segregation in auditory scene analysis. J Acoust Soc Am 117(3):1285–1298PubMedGoogle Scholar
  90. Sussman E (2007) A new view on the MMN and attention debate: auditory context effects. J Psychophysiol 21(3–4):164–175Google Scholar
  91. Sussman E (2013) Attention matters: pitch vs. pattern processing in adolescence. Front Psychol 4(333):1–9Google Scholar
  92. Sussman E, Gumenyuk V (2005) Organization of sequential sounds in auditory memory. NeuroReport 16(13):1519–1523PubMedGoogle Scholar
  93. Sussman E, Steinschneider M (2006) Neurophysiological evidence for context-dependent encoding of sensory input in human auditory cortex. Brain Res 1075(1):165–174PubMedCentralPubMedGoogle Scholar
  94. Sussman E, Steinschneider M (2009) Attention effects on auditory scene analysis in children. Neuropsychologia 47(3):771–785PubMedCentralPubMedGoogle Scholar
  95. Sussman E, Winkler I (2001) Dynamic sensory updating in the auditory system. Cogn Brain Res 12:431–439Google Scholar
  96. Sussman E, Ritter W, Vaughan HG Jr (1998a) Attention affects the organization of auditory input associated with the mismatch negativity system. Brain Res 789:130–138PubMedGoogle Scholar
  97. Sussman E, Ritter W, Vaughan HG Jr (1998b) Predictability of stimulus deviance and the mismatch negativity. NeuroReport 9(18):4167–4170PubMedGoogle Scholar
  98. Sussman E, Ritter W, Vaughan HG Jr (1999) An investigation of the auditory streaming effect using event-related brain potentials. Psychophysiology 36:22–34PubMedGoogle Scholar
  99. Sussman E, Winkler I, Huotilainen M, Ritter W, Näätänen R (2002) Top-down effects on the initially stimulus-driven auditory organization. Cogn Brain Res 13:393–405Google Scholar
  100. Sussman E, Sheridan K, Kreuzer J, Winkler I (2003a) Representation of the standard: stimulus context effects on the process generating the mismatch negativity component of event-related brain potentials. Psychophysiology 40(3):465–471PubMedGoogle Scholar
  101. Sussman E, Winkler I, Wang W (2003b) MMN and attention: competition for deviance detection. Psychophysiology 40(3):430–435PubMedGoogle Scholar
  102. Sussman E, Kujala T, Halmetoja J, Lyytinen H, Alku P, Näätänen R (2004) Automatic and controlled processing of acoustic and phonetic contrasts. Hear Res 190(1–2):128–140PubMedGoogle Scholar
  103. Sussman E, Bregman AS, Wang WJ, Khan FJ (2005) Attentional modulation of electrophysiological activity in auditory cortex for unattended sounds in multistream auditory environments. Cogn Affect Behav Neurosci 5(1):93–110PubMedGoogle Scholar
  104. Sussman ES, Horváth J, Winkler I, Orr M (2007) The role of attention in the formation of auditory streams. Percept Psychophys 69(1):136–152PubMedGoogle Scholar
  105. Sutton S, Braren M, Zubin J, John ER (1965) Evoked-potential correlates of stimulus uncertainty. Science 150(3700):1187–1188PubMedGoogle Scholar
  106. Szymanski MD, Yund EW, Woods DL (1999) Phonemes, intensity and attention: differential effects on the mismatch negativity (MMN). J Acoust Soc Am 106(6):3492–3505PubMedGoogle Scholar
  107. Tervaniemi M, Kruck S, DeBaene W, Schröger E, Alter K, Friederici AD (2009) Top-down modulation of auditory processing: effects of sound context, musical expertise and attentional focus. Eur J Neurosci 30(8):1636–1642PubMedGoogle Scholar
  108. Tiitinen H, May P, Reinikainen K, Näätänen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372(6501):90–92PubMedGoogle Scholar
  109. Treisman AM (1969) Strategies and models of selective attention. Psychol Rev 76:282–299PubMedGoogle Scholar
  110. van Linden S, Stekelenburg JJ, Tuomainen J, Vroomen J (2007) Lexical effects on auditory speech perception: an electrophysiological study. Neurosci Lett 420(1):49–52PubMedGoogle Scholar
  111. van Zuijen TL, Sussman E, Winkler I, Näätänen R, Tervaniemi M (2004) Grouping of sequential sounds—an event-related potential study comparing musicians and nonmusicians. J Cogn Neurosci 16(2):331–338PubMedGoogle Scholar
  112. Wang XD, Gu F, He K, Chen LH, Chen L (2012) Preattentive extraction of abstract auditory rules in speech sound stream: a mismatch negativity study using lexical tones. PLoS ONE 7(1):e30027PubMedCentralPubMedGoogle Scholar
  113. Wei JH, Chan TC, Luo YJ (2002) A modified oddball paradigm “cross-modal delayed response” and the research on mismatch negativity. Brain Res Bull 57(2):221–230PubMedGoogle Scholar
  114. Winkler I, Lehtokoski A, Alku P, Vainio M, Czigler I, Csépe V, Aaltonen O, Raimo I, Alho K, Lang H, Iivonen A, Näätänen R (1999) Pre-attentive detection of vowel contrasts utilizes both phonetic and auditory memory representations. Brain Res Cogn Brain Res 7(3):357–369PubMedGoogle Scholar
  115. Winkler I, Korzyukov O, Gumenyuk V, Cowan N, Linkenkaer-Hansen K, Ilmoniemi RJ, Alho K, Näätänen R (2002) Temporary and longer term retention of acoustic information. 39(4):530–534Google Scholar
  116. Winkler I, Kujala T, Alku P, Näätänen R (2003a) Language context and phonetic change detection. Brain Res Cogn Brain Res 17(3):833–844PubMedGoogle Scholar
  117. Winkler I, Sussman E, Tervaniemi M, Horváth J, Ritter W, Näätänen R (2003b) Preattentive auditory context effects. Cogn Affect Behav Neurosci 3(1):57–77PubMedGoogle Scholar
  118. Winkler I, Takegata R, Sussman E (2005) Event-related brain potentials reveal multiple stages in the perceptual organization of sound. Brain Res Cogn Brain Res 25(1):291–299PubMedGoogle Scholar
  119. Woldorff MG, Hackley SA, Hillyard SA (1991) The effects of channel-selective attention on the mismatch negativity wave elicited by deviant tones. Psychophysiology 28(1):30–42PubMedGoogle Scholar
  120. Woldorff MG, Hillyard SA, Gallen CC, Hampson SR, Bloom FE (1998) Magnetoencephalographic recordings demonstrate attentional modulation of mismatch-related neural activity in human auditory cortex. Psychophysiology 35(3):283–292PubMedGoogle Scholar
  121. Xi J, Zhang L, Shu H, Zhang Y, Li P (2010) Categorical perception of lexical tones in Chinese revealed by mismatch negativity. Neuroscience 170(1):223–231PubMedGoogle Scholar
  122. Yabe H, Winkler I, Czigler I, Koyama S, Kakigi R, Sutoh T, Hiruma T, Kaneko S (2001) Organizing sound sequences in the human brain: the interplay of auditory streaming and temporal integration. Cogn Brain Res 897:222–227Google Scholar
  123. Ylinen S, Uther M, Latvala A, Vepsäläinen S, Iverson P, Akahane-Yamada R, Näätänen R (2010) Training the brain to weight speech cues differently: a study of Finnish second-language users of English. J Cogn Neurosci 22(6):1319–1332PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • E. S. Sussman
    • 1
    • 2
  • S. Chen
    • 1
  • J. Sussman-Fort
    • 1
  • E. Dinces
    • 2
  1. 1.Department of NeuroscienceAlbert Einstein College of MedicineBronxUSA
  2. 2.Department of Otorhinolaryngology-HNSAlbert Einstein College of MedicineBronxUSA

Personalised recommendations