Brain Topography

, Volume 27, Issue 4, pp 428–437 | Cite as

Scalp Current Density Mapping in the Analysis of Mismatch Negativity Paradigms

  • Marie-Hélène Giard
  • Julien Besle
  • Pierre-Emmanuel Aguera
  • Marie Gomot
  • Olivier Bertrand
Review

Abstract

MMN oddball paradigms are frequently used to assess auditory (dys)functions in clinical populations, or the influence of various factors (such as drugs and alcohol) on auditory processing. A widely used procedure is to compare the MMN responses between two groups of subjects (e.g. patients vs controls), or between experimental conditions in the same group. To correctly interpret these comparisons, it is important to take into account the multiple brain generators that produce the MMN response. To disentangle the different components of the MMN, we describe the advantages of scalp current density (SCD)—or surface Laplacian—computation for ERP analysis. We provide a short conceptual and mathematical description of SCDs, describe their properties, and illustrate with examples from published studies how they can benefit MMN analysis. We conclude with practical tips on how to correctly use and interpret SCDs in this context.

Keywords

Mismatch negativity Scalp current density ERP mapping 

References

  1. Aguera PE, Jerbi K, Caclin A, Bertrand O (2011) ELAN: a software package for analysis and visualization of MEG, EEG, and LFP signals. Comput Intell Neurosci 2011:158970PubMedCentralPubMedGoogle Scholar
  2. Alcaini M, Giard MH, Thevenet M, Pernier J (1994) Two separate frontal components in the N1 wave of the human auditory evoked response. Psychophysiology 31:611–615PubMedCrossRefGoogle Scholar
  3. Alho K (1995) Cerebral generators of the mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear 16(1):38–51PubMedCrossRefGoogle Scholar
  4. Araki T, Kasai K, Nakagome K, Fukuda M, Itoh K, Koshida I, Kato N, Iwanami A (2005) Brain electric activity for active inhibition of auditory irrelevant information. Neurosci Lett 374(1):11–16PubMedCrossRefGoogle Scholar
  5. Baldeweg T, Klugman A, Gruzelier JH, Hirsch SR (2002) Impairment in frontal but not temporal components of mismatch negativity in schizophrenia. Int J Psychophysiol 43:111–122PubMedCrossRefGoogle Scholar
  6. Bar M, Kassam KS, Ghuman AS, Boshyan J, Schmid AM, Dale AM, Hämäläinen MS, Marinkovic K, Schacter DL, Rosen BR, Halgren E (2006) Top-down facilitation of visual recognition. Proc Natl Acad Sci USA 103(2):449–454PubMedCentralPubMedCrossRefGoogle Scholar
  7. Bender S, Oelkers-Ax R, Resch F, Weisbrod M (2006) Frontal lobe involvement in the processing of meaningful auditory stimuli develops during childhood and adolescence. Neuroimage 33(2):759–773PubMedCrossRefGoogle Scholar
  8. Bender S, Oelkers-Ax R, Hellwig S, Resch F, Weisbrod M (2008) The topography of the scalp-recorded visual N700. Clin Neurophysiol 119(3):587–604PubMedCrossRefGoogle Scholar
  9. Bendixen A, Prinz W, Horváth J, Trujillo-Barreto NJ, Schröger E (2008) Rapid extraction of auditory feature contingencies. Neuroimage 41(3):1111–1119PubMedCrossRefGoogle Scholar
  10. Besle J, Fort A, Delpuech C, Giard MH (2004) Bimodal speech: early suppressive effects in the human auditory cortex. Eur J Neurosci 20(8):2225–2234PubMedCentralPubMedCrossRefGoogle Scholar
  11. Besle J, Fort A, Giard MH (2005) Is the auditory sensory memory sensitive to visual information? Exp Brain Res 166:337–344PubMedCentralPubMedCrossRefGoogle Scholar
  12. Besle J, Hussain Z, Giard MH, Bertrand O (2013) The representation of audiovisual regularities in the human brain. J Cogn Neurosci 25:365–373PubMedCrossRefGoogle Scholar
  13. Bidet-Caulet A, Bertrand O (2005) Dynamics of a temporo-fronto-parietal network during sustained spatial or spectral auditory processing. J Cogn Neurosci 17(11):1691–1703PubMedCrossRefGoogle Scholar
  14. Cincotti F, Babiloni C, Miniussi C, Carducci F, Moretti D, Salinari S, Pascual-Marqui R, Rossini PM, Babiloni F (2004) EEG deblurring techniques in a clinical context. Methods Inf Med 43(1):114–117PubMedGoogle Scholar
  15. Clery H, Roux S, Besle J, Giard MH, Bruneau N, Gomot M (2012) Electrophysiological correlates of automatic visual change detection in school-age children. Neuropsychologia 50(2012):979–987PubMedCrossRefGoogle Scholar
  16. Clery H, Bonnet-Brilhault F, Lenoir P, Barthelemy C, Bruneau N, Gomot M (2013) Atypical visual change processing in children with autism: an electrophysiological study. Psychophysiology 50(3):240–252PubMedCrossRefGoogle Scholar
  17. Deouell L (2007) The frontal generator of the mismatch negativity revisited. J Psychophysiol 21(3–4):188–203CrossRefGoogle Scholar
  18. Deouell L, Bentin S, Giard MH (1998) Mismatch negativity in dichotic listening: evidence for interhemispheric differences and multiple generators. Psychophysiology 35:355–365PubMedCrossRefGoogle Scholar
  19. Doniger GM, Foxe JJ, Murray MM, Higgins BA, Snodgrass JG, Schroeder CE, Javitt DC (2000) Activation timecourse of ventral visual stream object-recognition areas: high density electrical mapping of perceptual closure processes. J Cogn Neurosci 12(4):615–621PubMedCrossRefGoogle Scholar
  20. Fahrenfort JJ, Scholte HS, Lamme VA (2007) Masking disrupts reentrant processing in human visual cortex. J Cogn Neurosci 19(9):1488–1497PubMedCrossRefGoogle Scholar
  21. Fort A, Delpuech C, Pernier J, Giard MH (2002) Dynamics of cortico-subcortical crossmodal operations involved in audio-visual object detection in humans. Cereb Cortex 12:1031–1039PubMedCrossRefGoogle Scholar
  22. Foxe JJ, Simpson GV (2002) Flow of activation from V1 to frontal cortex in humans. A framework for defining “early” visual processing. Exp Brain Res 142(1):139–150PubMedCrossRefGoogle Scholar
  23. Foxe JJ, Morocz IA, Murray MM, Higgins BA, Javitt DC, Schroeder CE (2000) Multisensory auditory-somatosensory interactions in early cortical processing revealed by high-density electrical mapping. Brain Res Cogn Brain Res 10(1–2):77–83PubMedCrossRefGoogle Scholar
  24. George N, Evans J, Fiori N, Davidoff J, Renault B (1996) Brain events related to normal and moderately scrambled faces. Brain Res Cogn Brain Res 4(2):65–76PubMedCrossRefGoogle Scholar
  25. Giard MH, Peronnet F (1999) Auditory-visual integration during multimodal object recognition in humans: a behavioral and electrophysiological study. J Cogn Neurosci 11(5):473–490PubMedCrossRefGoogle Scholar
  26. Giard MH, Perrin F, Pernier J, Bouchet J (1990) Brain generators implicated in the processing of auditory stimulus deviance: a topographic event-related potential study. Psychophysiology 27:627–640PubMedCrossRefGoogle Scholar
  27. Giard MH, Perrin F, Echallier JF, Thevenet M, Froment JC, Pernier J (1994) Dissociation of temporal and frontal components in the human auditory N1 wave: a scalp current density and dipole model analysis. Electroencephalogr Clin Neurophysiol 92:238–252PubMedCrossRefGoogle Scholar
  28. Gómez Gonzales CM, Clark VP, Fan S, Luck SJ, Hillyard SA (1994) Sources of attention-sensitive visual event-related potentials. Brain Topogr 7(1):41–51CrossRefGoogle Scholar
  29. Gómez CM, Delinte A, Vaquero E, Cardoso MJ, Vázquez M, Crommelinck M, Roucoux A (2001) Current source density analysis of CNV during temporal gap paradigm. Brain Topogr 13(3):149–159PubMedCrossRefGoogle Scholar
  30. Gomot M, Giard MH, Roux S, Barthelemy C, Bruneau N (2000) Maturation of frontal and temporal components of mismatch negativity (MMN) in children. NeuroReport 11:3109–3112PubMedCrossRefGoogle Scholar
  31. Gomot M, Giard MH, Adrien JL, Barthelemy C, Bruneau N (2002) Hypersensitivity to acoustic change in children with autism: electrophysiological evidence of left frontal cortex dysfunctioning. Psychophysiology 39:577–584PubMedCrossRefGoogle Scholar
  32. Gomot M, Bernard FA, Davis MH, Belmonte MK, Ashwin C, Bullmore ET, Baron-Cohen S (2006) Change detection in children with autsm: an auditory event-related fMRI study. Neuroimage 29(2):475–484PubMedCrossRefGoogle Scholar
  33. Gomot M, Bruneau N, Laurent J-P, Barthélémy C, Saliba E (2007) Left temporal impairment of auditory information processing in prematurely born 9-year-old children: an electrophysiological study. Int J Psychophysiol 64:123–129PubMedCrossRefGoogle Scholar
  34. Graux J, Gomot M, Roux S, Bonnet-Brilhault F, Camus V, Bruneau N (2013) My voice or yours? An electrophysiological study. Brain Topogr 26:72–82PubMedCrossRefGoogle Scholar
  35. Hada M, Porjesz B, Chorlian DB, Begleiter H, Polich J (2001) Auditory P3a deficits in male subjects at high risk for alcoholism. Biol Psychiatry 49(8):726–738PubMedCrossRefGoogle Scholar
  36. He X, Humphreys G, Fan S, Chen L, Han S (2008) Differentiating spatial and object-based effects on attention: an event-related brain potential study with peripheral cueing. Brain Res 1245:116–125PubMedCrossRefGoogle Scholar
  37. Hjorth B (1975) An online transformation of EEG scalp potentials into orthogonal source derivations. Electroencephalogr Clin Neurophysiol 39:526–530PubMedCrossRefGoogle Scholar
  38. Holeckova I, Fischer C, Giard MH, Delpuech C, Morlet D (2006) Brain responses to a subject’s own name uttered by a familiar voice. Brain Res 1082(1):142–152PubMedCrossRefGoogle Scholar
  39. Hommet C, Vidal J, Roux S, Blanc R, Barthez M-A, De Becque B, Barthelemy C, Bruneau N, Gomot M (2009) Topography of syllable change-detection electrophysiological indices in children and adults with reading disabilities. Neuropsychologia 47(3):761–770PubMedCrossRefGoogle Scholar
  40. Jääskeläinen IP, Pekkonen E, Hirvonen J, Sillanaukee P, Näätänen R (1996) Mismatch negativity subcomponents and ethyl alcohol. Biol Psychol 43:13–25PubMedCrossRefGoogle Scholar
  41. Jääskeläinen IP, Ahveninen J, Bonmassar G, Dale AM, Ilmoniemi RJ, Levänen S, Lin FH, May P, Melcher J, Stufflebeam S, Tiitinen H, Belliveau JW (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101(17):6809–6814PubMedCentralPubMedCrossRefGoogle Scholar
  42. Jemel B, Coutya J, Langer C, Roy S (2009) From upright to upside-down presentation: a spatio-temporal ERP study of the parametric effect of rotation on face and house processing. BMC Neurosci 10:100PubMedCentralPubMedCrossRefGoogle Scholar
  43. Ji J, Porjesz B, Begleiter H, Chorlian D (1999) P300: the similarities and differences in the scalp distribution of visual and auditory modality. Brain Topogr 11(4):315–327PubMedCrossRefGoogle Scholar
  44. Kaiser J, Bertrand O (2003) Dynamics of working memory for moving sounds: an event-related potential and scalp current density study. Neuroimage 19(4):1427–1438PubMedCrossRefGoogle Scholar
  45. Kasai K, Nakagome K, Itoh K, Koshida I, Hata A, Iwanami A, Fukuda M, Kato N (2002) Impaired cortical network for preattentive detection of change in speech sounds in schizophrenia: a high-resolution event-related potential study. Am J Psychiatry 159(4):546–553PubMedCrossRefGoogle Scholar
  46. Kayser J, Tenke CE, Kroppmann CJ, Fekri S, Alschuler DM, Gates NA, Gil R, Harkavy-Friedman JM, Jarskog LF, Bruder GE (2010) Current source density (CSD) old/new effects during recognition memory for words and faces in schizophrenia and in healthy adults. Int J Psychophysiol 75(2):194–210PubMedCentralPubMedCrossRefGoogle Scholar
  47. Kayser J, Tenke CE, Kroppmann CJ, Alschuler DM, Fekri S, Gil R, Jarskog LF, Harkavy-Friedman JM, Bruder GE (2012) A neurophysiological deficit in early visual processing in schizophrenia patients with auditory hallucinations. Psychophysiology 49(9):1168–1178PubMedCentralPubMedCrossRefGoogle Scholar
  48. Klein C, Berg P, Rockstroh B, Andresen B (1999) Topography of the auditory P300 in schizotypal personality. Biol Psychiatry 45(12):1612–1621PubMedCrossRefGoogle Scholar
  49. Luck SJ, Hillyard SA (1994) Electrophysiological correlates of feature analysis during visual search. Psychophysiology 31(3):291–308PubMedCrossRefGoogle Scholar
  50. Mangun GR, Hillyard SA, Luck SJ (1993) Electrocortical substrates of visual selective attention. In: Meyer D, Kornblum S (eds) Attention and performance XIV. MIT Press, Cambridge, MA, pp 219–243Google Scholar
  51. Marco-Pallarés J, Ruffini G, Polo MD, Gual A, Escera C, Grau C (2007) Mismatch negativity impairment associated with alcohol consumption in chronic alcoholics: a scalp current density study. Int J Psychophysiol 65(1):51–57PubMedCrossRefGoogle Scholar
  52. Martin BA, Shafer VL, Morr ML, Kreuzer JA, Kurtzberg D (2003) Maturation of mismatch negativity: a scalp current density analysis. Ear Hear 24(6):463–471PubMedCrossRefGoogle Scholar
  53. May PJ, Tiitinen H (2010) Mismatch negativity (MMN), the deviance-elicited auditory deflection, explained. Psychophysiology 47(1):66–122PubMedCrossRefGoogle Scholar
  54. McKay DM (1983) On line source density computation with a minimum of electrodes. Electroencephalogr Clin Neurophysiol 56:696–698CrossRefGoogle Scholar
  55. Michel CM, Murray MM (2012) Towards the utilization of EEG as a brain imaging tool. Neuroimage 61(2):371–385PubMedCrossRefGoogle Scholar
  56. Murray MM, Brunet D, Michel CM (2008) Topographic ERP analyses: a step-by-step tutorial review. Brain Topogr 20(4):249–264PubMedCrossRefGoogle Scholar
  57. Näätänen R (1990) The role of attention in auditory information processing as revealed by event-elated potentials and other brain measures of cognitive function. Behav Brain Sci 13:201–288CrossRefGoogle Scholar
  58. Näätänen R, Jacobsen T, Winkler I (2005) Memory-based or afferent processes in mismatch negativity (MMN): a review of the evidence. Psychophysiology 42(1):25–32PubMedCrossRefGoogle Scholar
  59. Näätänen R, Kujala T, Escera C, Baldeweg T, Kreegipuu K, Carlson S, Ponton C (2012) The mismatch negativity (MMN)—a unique window to disturbed central auditory processing in ageing and different clinical conditions. Clin Neurophysiol 123(3):424–458PubMedCrossRefGoogle Scholar
  60. Nunez PL (1981) Electric fields of the brain. Oxford University Press, New York, pp 196–203Google Scholar
  61. Nunez PL, Westdorp AF (1994) The surface Laplacian, high resolution EEG and controversies. Brain Topogr 6(3):221–226PubMedCrossRefGoogle Scholar
  62. Paavilainen P, Mikkonen M, Kilpeläinen M, Lehtinen R, Saarela M, Tapola L (2003) Evidence for the different additivity of the temporal and frontal generators of mismatch negativity: a human auditory event-related potential study. Neurosci Lett 349:79–82PubMedCrossRefGoogle Scholar
  63. Pernier J, Perrin F, Bertrand O (1988) Scalp current density fields: concept and properties. Electroencephalogr Clin Neurophysiol 69:385–389PubMedCrossRefGoogle Scholar
  64. Perrin F, Bertrand O, Pernier J (1987a) Scalp current density mapping: value and estimation from potential data. IEEE Trans Biomed Eng 34(4):283–288PubMedCrossRefGoogle Scholar
  65. Perrin F, Pernier J, Bertrand O, Giard MH, Echallier JF (1987b) Mapping of scalp potentials by surface spline interpolation. Electroencephalogr Clin Neurophysiol 66:75–81PubMedCrossRefGoogle Scholar
  66. Perrin F, Pernier J, Bertrand O, Echallier JF (1989) Spherical splines for scalp potential and current density mapping. Electroencephalogr Clin Neurophysiol 72:184–187PubMedCrossRefGoogle Scholar
  67. Pieszek M, Widmann A, Gruber T, Schröger E (2013) The human brain maintains contradictory and redundant auditory sensory predictions. PLoS ONE 8(1):e53634PubMedCentralPubMedCrossRefGoogle Scholar
  68. Restuccia D, Della Marca G, Marra C, Rubino M, Valeriani M (2005) Attentional load of the primary task influences the frontal but not the temporal generators of mismatch negativity. Cogn Brain Res 25:891–899CrossRefGoogle Scholar
  69. Rinne T, Alho K, Ilmoniemi RJ, Virtanen J, Näätänen R (2000) Separate time behaviors of the temporal and frontal mismatch negativity sources. NeuroImage 12:14–19PubMedCrossRefGoogle Scholar
  70. Saint-Amour D, De Sanctis P, Molholm S, Ritter W, Foxe JJ (2007) Seeing voices: high-density electrical mapping and source-analysis of the multisensory mismatch negativity evoked during the McGurk illusion. Neuropsychologia 45(3):587–597PubMedCentralPubMedCrossRefGoogle Scholar
  71. Sallinen M, Lyytinen H (1997) Mismatch negativity during objective and subjective sleepiness. Psychophysiology 34:694–702PubMedCrossRefGoogle Scholar
  72. Saron CD, Schroeder CE, Foxe JJ, Vaughan HG Jr (2001) Visual activation of frontal cortex: segregation from occipital activity. Brain Res Cogn Brain Res 12(1):75–88PubMedCrossRefGoogle Scholar
  73. Sato Y, Yabe H, Hiruma T, Sutoh T, Shinozaki N, Nashida T, Kaneko S (2000) The effect of deviant stimulus probability on the human mismatch process. NeuroReport 11:3703–3708PubMedCrossRefGoogle Scholar
  74. Sato Y, Yabe H, Todd J, Michie P, Shinozaki N, Sutoh T et al (2003) Impairment in activation of a frontal attention switch mechanism in schizophrenic patients. Biol Psychol 62:49–63PubMedCrossRefGoogle Scholar
  75. Schröger E, Giard MH, Wolf CH (2000) Auditory distraction: event-related potential and behavioral indices. Clin Neurophysiol 111(8):1450–1460PubMedCrossRefGoogle Scholar
  76. Seri S, Cerquiglini A, Pisani F, Curatolo P (1999) Autism in tuberous sclerosis: evoked potential evidence for a deficit in auditory sensory processing. Clin Neurophysiol 110:1825–1830PubMedCrossRefGoogle Scholar
  77. Shalgi S, Deouell LY (2007) Direct evidence for differential roles of temporal and frontal components of auditory change detection. Neuropsychologia 45:1878–1888PubMedCrossRefGoogle Scholar
  78. Tenke CE, Kayser J, Stewart JW, Bruder GE (2010) Novelty P3 reductions in depression: characterization using principal components analysis (PCA) of current source density (CSD) waveforms. Psychophysiology 47(1):133–146PubMedCentralPubMedCrossRefGoogle Scholar
  79. van der Stelt O, van der Molen M, Boudewijn Gunning W, Kok A (2001) Neuroelectrical signs of selective attention to color in boys with attention-deficit hyperactivity disorder. Brain Res Cogn Brain Res 12(2):245–264PubMedCrossRefGoogle Scholar
  80. Verkindt C, Bertrand O, Thevenet M, Pernier J (1994) Two auditory components in the 130–230 ms range disclosed by their stimulus frequency dependence. NeuroReport 5(10):1189–1192PubMedCrossRefGoogle Scholar
  81. Vidal F, Hasbroucq T, Grapperon J, Bonnet M (2000) Is the ‘error negativity’ specific to errors? Biol Psychol 51(2–3):109–128PubMedCrossRefGoogle Scholar
  82. Vidal J, Giard MH, Roux B, Barthelemy C, Bruneau N (2008) Cross-modal processing of auditory-visual stimuli in a no-task paradigm: a topographic event-related potential study. Clin Neurophysiol 119(4):763–771PubMedCrossRefGoogle Scholar
  83. Wolff C, Schröger E (2001) Human pre-attentive auditory change-detection with single, double, and triple deviations as revealed by mismatch negativity additivity. Neurosci Lett 311:37–40PubMedCrossRefGoogle Scholar
  84. Yago H, Escera C, Alho K, Giard MH (2001) Cerebral mechanisms underlying orienting of attention towards auditory frequency changes. NeuroReport 12(11):2583–2587PubMedCrossRefGoogle Scholar
  85. Yago H, Escera C, Alho K, Giard MH (2003) Spatiotemporal dynamics of the auditory novelty-P3 event-related brain potential. Cogn Brain Res 16(3):383–390CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Marie-Hélène Giard
    • 1
    • 2
  • Julien Besle
    • 3
  • Pierre-Emmanuel Aguera
    • 1
    • 2
  • Marie Gomot
    • 4
  • Olivier Bertrand
    • 1
    • 2
  1. 1.Brain Dynamics and Cognition Team, INSERM, U1028, CNRS, UMR5292CRNL, Lyon Neuroscience Research CenterLyonFrance
  2. 2.University Lyon 1LyonFrance
  3. 3.MRC Institute of Hearing ResearchNottinghamUK
  4. 4.UMR 930 Imaging and Brain, INSERMUniversité Francois Rabelais de ToursToursFrance

Personalised recommendations