Advertisement

Brain Topography

, Volume 27, Issue 1, pp 112–122 | Cite as

Synchronization Implies Seizure or Seizure Implies Synchronization?

  • Kaushik MajumdarEmail author
  • Pradeep D. Prasad
  • Shailesh Verma
Original Paper

Abstract

Epileptic seizures are considered as abnormally hypersynchronous neuronal activities of the brain. The question is “Do hypersynchronous neuronal activities in a brain region lead to seizure or the hypersynchronous activities take place due to the progression of the seizure?” We have examined the ECoG signals of 21 epileptic patients consisting of 87 focal-onset seizures by three different measures namely, phase synchronization, amplitude correlation and simultaneous occurrence of peaks and troughs. Each of the measures indicates that for a majority of the focal-onset seizures, synchronization or correlation or simultaneity occurs towards the end of the seizure or even after the offset rather than at the onset or in the beginning or during the progression of the seizure. We have also briefly discussed about a couple of synchronization dependent seizure termination mechanisms. Our conclusion is synchronization is an effect rather than the cause of a significant number of pharmacologically intractable focal-onset seizures. Since all the seizures that we have tested belong to the pharmacologically intractable class, their termination through more coherent neuronal activities may lead to new and effective ways of discovery and testing of drugs.

Keywords

Electrocorticography (ECoG) Focal epilepsy Hilbert phase synchronization Amplitude correlation Peaks and troughs detection Seizure termination dynamics 

Notes

Acknowledgments

This work has been supported by an internal research grant of the Indian Statistical Institute given to the Systems Science and Informatics Unit. We are thankful to the Freiburg Seizure Prediction Project for making their epileptic ECoG data available to the research community all over the world, which we eventually accessed and worked on. We would also like to thank the three anonymous referees whose suggestions resulted in improvements in the paper.

References

  1. Anastassiou CA, Perin R, Markram H, Koch C (2011) Ephaptic coupling of cortical neurons. Nat Neurosci 14(2):217–223PubMedCrossRefGoogle Scholar
  2. Arthuis M, Valton L, Regis J, Chauvel P, Wendling F, Naccache L, Benard C, Bartolomei F (2009) Impaired consciousness during temporal lobe seizures is related to increased long-distance cortical-subcortical synchronization. Brain 132(8):2091–2101PubMedCrossRefGoogle Scholar
  3. Bartolomei F, Wendling F, Ballanger JJ, Regis J, Chauvel P (2001) Neural networks involving the medial temporal structures in temporal lobe epilepsy. Clin Neurophysiol 112(9):1746–1760PubMedCrossRefGoogle Scholar
  4. Bartolomei F, Wendling F, Regis J, Gavaret M, Guye M, Chauvel P (2004) Pre-ictal synchronicity in limbic networks of mesial temporal lobe epilepsy. Epilepsy Res 61:89–104PubMedCrossRefGoogle Scholar
  5. Bolshakov KV, Essin KV, Buldakov SL, Dorofeeva NA, Skatchkov SN, Eaton MJ, Tikhonov DB, Magazanik LG (2002) Characterization of acid-sensitive ion channels in freshly isolated rat brain neurons. Neuroscience 110:723–730PubMedCrossRefGoogle Scholar
  6. Bragin A, Penttonen A, Buzsaki G (1997) Termination of epileptic afterdischarges in the hippocampus. J Neurosci 17(7):2567–2579PubMedGoogle Scholar
  7. Bush PC, Douglas RJ (1991) Synchronization of bursting action potential discharge in a model network of neocortical neurons. Neural Comput 3:19–30CrossRefGoogle Scholar
  8. Chavez M, Van Quyen ML, Navarro V, Baulac M, Martinerie J (2003) Spatio-temporal dynamics prior to neocortical seizures: amplitude versus phase couplings. IEEE Trans Biomed Eng 50(5):571–583PubMedCrossRefGoogle Scholar
  9. Crone NE, Sinai A, Korzeniewaska A (2006) High-frequency gamma oscillations and human brain mapping with electrocorticography. Prog Brain Res 169:275–295CrossRefGoogle Scholar
  10. Dauwels J, Eskandar E, Cash S (2009) Localization of seizure onset area from intracranial non-seizure EEG by exploiting locally enhanced synchrony. Proc IEEE Eng Med Biol Soc 3:2180–2183Google Scholar
  11. Di Pasquale E, Keegan KD, Noebels JL (1997) Increased excitability and inward rectification in layer V cortical pyramidal neurons in the epileptic mutant mouse Stragazer. J Neurophysiol 77(2):621–631PubMedGoogle Scholar
  12. Dominguez LG, Wennberg RA, Gaetz W, Cheyne D, Carter Snead III O, Perez Velazquez JL (2005) Enhanced synchrony in epileptiform activity? Local versus distant phase synchronization in generalized seizures. J Neurosci 31:8077–8084CrossRefGoogle Scholar
  13. Fisher RS, van Emde Boas W, Blume W, Elger C, Genton P, Lee P, Jr Engel J (2005) Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia 46(4):470–472PubMedCrossRefGoogle Scholar
  14. Freiburg data (2008) available from the Freiburg seizure detection project, Albert-Ludwig-Universitat, Freiburg, Germany. https://epilepsy.uni-freiburg.de/. 2008
  15. Guye M, Regis J, Tamura M, Wendling F, Mc Gonigal A, Chauvel P, Bartolomei F (2006) The role of corticothalamic coupling in human temporal lobe epilepsy. Brain 129(7):1917–1928PubMedCrossRefGoogle Scholar
  16. Jefferey JGR, Traub RD, Whittington MA (1996) Neuronal networks for induced’ 40 Hz’ rhythms. Trends Neurosci 19:202–208CrossRefGoogle Scholar
  17. Jerger KK, Weinstein SL, Sauer T, Schiff SJ (2005) Multivariate linear discrimination of seizures. Clin Neurophysiol 116:545–551PubMedCrossRefGoogle Scholar
  18. Jirsch JD, Urrestarazu E, LeVan P, Olivier A, Dubeau F, Gotman J (2006) High-frequency oscillations during human focal-onset seizures. Brain 129(6):1593–1608PubMedCrossRefGoogle Scholar
  19. Kandel ER, Jessel TM, Schwartz JH (2000) Principles of neural science, 4th edn. McGraw Hill, New YorkGoogle Scholar
  20. Lachaux J-P, Lutz A, Raudrauf D, Cosmelli D, Van Quyen ML, Martinerie J, Varela F (2002) Estimating the time-course of coherence between single-trial brain signals: An introduction to wavelet coherence. Clin Neurophsiol 32(3):157–174CrossRefGoogle Scholar
  21. Lado FA, Moshe SL (2008) How do seizures stop? Epilepsia 49(10):1651–1664PubMedCentralPubMedCrossRefGoogle Scholar
  22. Lytton WW, Sejnowski TJ (1991) Simulations of cortical pyramidal neurons synchronized by inhibitory interneurons. J Neurophysiol 66(3):1059–1079PubMedGoogle Scholar
  23. Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53:173–185PubMedCrossRefGoogle Scholar
  24. Netoff TI, Schiff SJ (2002) Decreased synchronization during experimental seizures. J Neurosci 22(16):7297–7307PubMedGoogle Scholar
  25. Penfield W, Jasper H (1954) Epilepsy and functional anatomy of the human brain. Little-Brown, BostonGoogle Scholar
  26. Polack P-O, Guillemain I, Hu E, Deransart C, Depaulis A, Charpier S (2007) Deep layer somatosensory cortical neurons initiate spike-and-wave discharges in a genetic model of absence seizure. J Neurosci 27(24):6590–6599PubMedCrossRefGoogle Scholar
  27. Quiroga RQ, Karskov A, Kreuz T (2002) Performance of different synchronization measures in real data: a case study on electroencephalographic signals. Phys Rev E 65(4):041903CrossRefGoogle Scholar
  28. Rosenberg DS, Mauguiere F, Demarquay G, Ryvlin P, Isnard J, Fischer C, Guenot M, Magnin M (2006) Involvement of medial pulvinar thalamic nucleus in human temporal lobe seizures. Epilepsia 47(1):98–107PubMedCrossRefGoogle Scholar
  29. Rosenblum MG, Pikovsky AS, Kurths J (1996) Phase synchronization of chaotic oscillators. Phys Rev Lett 76(11):1804–1807PubMedCrossRefGoogle Scholar
  30. Rosenblum M, Pikovsky A, Kurths J, Schafer C, Tass PA (2001) Phase synchronization: from theory to data analysis. In: Moss F, Gielen S (eds) Neuro-informatics and neural modeling. Elsevier, Amsterdam, pp 279–321CrossRefGoogle Scholar
  31. Rummel C, Goodfellow M, Gast H, Hauf M, Amor F, Stibal A, Mariani L, Wiest R, Schindler K 2012 A systems-level approach to human epileptic seizures. Neuroinformatics. doi:  10.1007/s12021-012-9161-2. (to appear)
  32. Schevon CA, Weiss SA, McKhann Jr G, Goodman RR, Yuste R, Emerson RG, Trevelyan AJ (2012) Evidence of an inhibitory restraint of seizure activity in humans. Nat Commun 3: 1060 http://www.nature.com/ncomms/journal/v3/n9/abs/ncomms2056.html
  33. Schindler K, Leung H, Elger CE, Lehnertz K (2007a) Assessing seizure dynamics by analysing the correlation structure of multichannel intracranial EEG. Brain 130(1):65–77PubMedCrossRefGoogle Scholar
  34. Schindler K, Elger CE, Lehnertz K (2007b) Increasing synchronization may promote seizure termination: evidence from status epilepticus. Clin Neurophysiol 118:1955–1968PubMedCrossRefGoogle Scholar
  35. Somjen GG, Tombaugh GC (1998) pH modulation of neuronal excitability and central nervous system functions. In: Kalia K, Ransom BR (eds) pH and brain function. Wiley-Liss, New York, pp 373–393Google Scholar
  36. Tass P, Rosenblum MG, Weule J, Kurths J, Pikovsky A, Volkmann J, Schnitzler A, Freund H-J (1998) Detection of n : m phase locking noisy data: application to magnetoencephalography. Phys Rev Lett 81(15):3291–3294CrossRefGoogle Scholar
  37. Timofev I, Steriade M (2004) Neocortical seizures: initiation, development and cessation. Neuroscience 123(2):299–336CrossRefGoogle Scholar
  38. Truccolo W, Donoghue JA, Hochberg LR, Eskandar EN, Madsen JR, Anderson WA, Brown EN, Halgren E, Cash SS (2011) Single-neuron dynamics in human focal epilepsy. Nat Neurosci 14:635–641PubMedCentralPubMedCrossRefGoogle Scholar
  39. Van Quyen ML, Foucher J, Lachaux J-P, Rodriguez E, Lutz A, Martinerie J, Varela FJ (2001) Comparison of Hilbert transform and wavelet methods for the analysis of neural synchrony. J Neurosci Method 111(2):83–98CrossRefGoogle Scholar
  40. Wendling F, Bartolomei F, Bellanger JJ, Bourien J, Chauvel P (2003) Epileptic fast intracerebral EEG activity: evidence for spatial decorrelation at seizure onset. Brain 126(6):1449–1459PubMedCentralPubMedCrossRefGoogle Scholar
  41. Worrell GA, Parish L, Cranstoun SD, Jonas R, Baltuch G, Litt B (2004) High-frequency oscillation and seizure generation in neocortical epilepsy. Brain 127(7):1496–1506PubMedCrossRefGoogle Scholar
  42. Wyler AR, Ojemann GA, Ward AA Jr (1982) Neurons in human epileptic cortex: correlation between unit and EEG activity. Ann Neurol 11:301–308PubMedCrossRefGoogle Scholar
  43. Ziemann AE, Schnizler MK, Albert GW, Severson MS, Howard MA III, Welsh MJ, Wemmie JA (2008) Seizure termination by acidosis depends on ASIC1a. Nat Neurosci 11:816–822PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Kaushik Majumdar
    • 1
    Email author
  • Pradeep D. Prasad
    • 1
  • Shailesh Verma
    • 1
  1. 1.Systems Science and Informatics UnitIndian Statistical InstituteBangaloreIndia

Personalised recommendations