Advertisement

Brain Topography

, Volume 26, Issue 3, pp 442–457 | Cite as

Coupling Between Resting Cerebral Perfusion and EEG

  • R. L. O’Gorman
  • S.-S. Poil
  • D. Brandeis
  • P. Klaver
  • S. Bollmann
  • C. Ghisleni
  • R. Lüchinger
  • E. Martin
  • A. Shankaranarayanan
  • D. C. Alsop
  • L. Michels
Original Paper

Abstract

While several studies have investigated interactions between the electroencephalography (EEG) and functional magnetic resonance imaging BOLD signal fluctuations, less is known about the associations between EEG oscillations and baseline brain haemodynamics, and few studies have examined the link between EEG power outside the alpha band and baseline perfusion. Here we compare whole-brain arterial spin labelling perfusion MRI and EEG in a group of healthy adults (n = 16, ten females, median age: 27 years, range 21–48) during an eyes closed rest condition. Correlations emerged between perfusion and global average EEG power in low (delta: 2–4 Hz and theta: 4–7 Hz), middle (alpha: 8–13 Hz), and high (beta: 13–30 Hz and gamma: 30–45 Hz) frequency bands in both cortical and sub-cortical regions. The correlations were predominately positive in middle and high-frequency bands, and negative in delta. In addition, central alpha frequency positively correlated with perfusion in a network of brain regions associated with the modulation of attention and preparedness for external input, and central theta frequency correlated negatively with a widespread network of cortical regions. These results indicate that the coupling between average EEG power/frequency and local cerebral blood flow varies in a frequency specific manner. Our results are consistent with longstanding concepts that decreasing EEG frequencies which in general map onto decreasing levels of activation.

Keywords

Arterial spin labelling EEG power Whole-brain perfusion Resting state 

Abbreviations

ASL

Arterial spin labeling

BA

Brodmann area

BOLD

Blood oxygenation level dependent

EEG

Electroencephalogram

FDG

Fluoro-deoxyglucose

FWE

Family-wise error

fMRI

Functional magnetic resonance imaging

ICA

Independent component analysis

MEG

Magnetoencephalography

MNI

Montreal neurological institute

MRT

Magnetic resonance tomography

Notes

Acknowledgments

This work was supported by the NCCR on Neural Plasticity and Repair, and by the University Research Priority Program on Integrative Human Physiology. We thank Dr. John Suckling and the developer teams at Cambridge University and the Institute of Psychiatry, King’s College London (London, UK) for advice regarding the CamBA installation and analysis.

Supplementary material

10548_2012_265_MOESM1_ESM.tif (470 kb)
Supplementary Figure 1: Scatter plot showing the correlation between alpha central frequency (Top) and theta central frequency (Bottom) with perfusion. (TIFF 469 kb)

References

  1. Aguirre GK, Detre JA, Zarahn E, Alsop DC (2002) Experimental design and the relative sensitivity of BOLD and perfusion fMRI. Neuroimage 15:488–500PubMedCrossRefGoogle Scholar
  2. Alkire MT (2008) Probing the mind: anesthesia and neuroimaging. Clin Pharmacol Ther 84:149–152PubMedCrossRefGoogle Scholar
  3. Almeida R, Stetter M (2002) Modeling the link between functional imaging and neuronal activity: synaptic metabolic demand and spike rates. Neuroimage 17:1065–1079PubMedCrossRefGoogle Scholar
  4. Alper KR, John ER, Brodie J, Günther W, Daruwala R, Prichep LS (2006) Correlation of PET and qEEG in normal subjects. Psychiatry Res 146:271–282PubMedCrossRefGoogle Scholar
  5. Alsop DC, Detre JA (1996) Reduced transit-time sensitivity in noninvasive magnetic resonance imaging of human cerebral blood flow. J Cereb Blood Flow Metab 16:1236–1249PubMedCrossRefGoogle Scholar
  6. Axmacher N, Mormann F, Fernández G, Elger CE, Fell J (2006) Memory formation by neuronal synchronization. Brain Res Rev 52:170–182PubMedCrossRefGoogle Scholar
  7. Bakhtadze MA, Vernon H, Karalkin AV, Pasha SP, Tomashevskiy IO, Soave D (2012) Cerebral perfusion in patients with chronic neck and upper back pain: preliminary observations. J Manipulative Physiol Ther 35:76–85PubMedCrossRefGoogle Scholar
  8. Bartlett EJ, Brodie JD, Wolf AP, Christman DR, Laska E, Meissner M (1988) Reproducibility of cerebral glucose metabolic measurements in resting human subjects. J Cereb Blood Flow Metab 8:502–512PubMedCrossRefGoogle Scholar
  9. Ben-Simon E, Podlipsky I, Arieli A, Zhdanov A, Hendler T (2008) Never resting brain: simultaneous representation of two alpha related processes in humans. PLoS One 3:e3984PubMedCrossRefGoogle Scholar
  10. Binder JR, Frost JA, Hammeke TA, Bellgowan PSF, Rao SM, Cox RW (1999) Conceptual processing during the conscious resting state: a functional MRI study. J Cogn Neurosci 11:80–93PubMedCrossRefGoogle Scholar
  11. Brem S, Bach S, Kucian K, Guttorm TK, Martin E, Lyytinen H, Brandeis D, Richardson U (2010) Brain sensitivity to print emerges when children learn letter-speech sound correspondences. Proc Natl Acad Sci USA 107:7939PubMedCrossRefGoogle Scholar
  12. Brown GG, Perthen JE, Liu TT, Buxton RB (2007) A primer on functional magnetic resonance imaging. Neuropsychol Rev 17:107–125PubMedCrossRefGoogle Scholar
  13. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44:195–208PubMedCrossRefGoogle Scholar
  14. Buxton RB, Uludag K, Dubowitz DJ, Liu TT (2004) Modeling the hemodynamic response to brain activation. Neuroimage 23:S220–S233PubMedCrossRefGoogle Scholar
  15. Buzsaki G (2006) Rhythms of the brain. Oxford University Press, OxfordCrossRefGoogle Scholar
  16. Chamberlain SR, Hampshire A, Müller U, Rubia K, Del Campo N, Craig K, Regenthal R, Suckling J, Roiser JP, Grant JE et al (2009) Atomoxetine modulates right inferior frontal activation during inhibitory control: a pharmacological functional magnetic resonance imaging study. Biol Psychiatry 65:550–555PubMedCrossRefGoogle Scholar
  17. Dai W, Garcia D, De Bazelaire C, Alsop DC (2008) Continuous flow-driven inversion for arterial spin labeling using pulsed radio frequency and gradient fields. Magn Reson Med 60:1488–1497PubMedCrossRefGoogle Scholar
  18. Danos P, Guich S, Abel L, Buchsbaum MS (2001) EEG alpha rhythm and glucose metabolic rate in the thalamus in schizophrenia. Neuropsychobiology 43:265–272PubMedCrossRefGoogle Scholar
  19. De Lange FP, Jensen O, Bauer M, Toni I (2008) Interactions between posterior gamma and frontal alpha/beta oscillations during imagined actions. Front Hum Neurosci 2:7PubMedGoogle Scholar
  20. De Munck JC, Goncalves SI, Huijboom L, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva FH (2007) The hemodynamic response of the alpha rhythm: an EEG/fMRI study. Neuroimage 35:1142–1151PubMedCrossRefGoogle Scholar
  21. De Munck JC, Goncalves SI, Faes TJC, Kuijer JPA, Pouwels PJW, Heethaar RM, Lopes da Silva FH (2008) A study of the brain’s resting state based on alpha band power, heart rate and fMRI. Neuroimage 42:112–121PubMedCrossRefGoogle Scholar
  22. Delorme A, Makeig S (2004) EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J Neurosci Methods 134:9–21PubMedCrossRefGoogle Scholar
  23. Dierks T, Jelic V, Pascual-Marqui RD, Wahlund LO, Julin P, Linden DEJ, Maurer K, Winblad B, Nordberg A (2000) Spatial pattern of cerebral glucose metabolism (PET) correlates with localization of intracerebral EEG-generators in Alzheimer’s disease. Clin Neurophysiol 111:1817–1824PubMedCrossRefGoogle Scholar
  24. Duong TQ, Kim DS, Uğurbil K, Kim SG (2001) Localized cerebral blood flow response at submillimeter columnar resolution. Proc Natl Acad Sci USA 98:10904PubMedCrossRefGoogle Scholar
  25. Dustman RE, Shearer DE, Emmerson RY (1999) Life-span changes in EEG spectral amplitude, amplitude variability and mean frequency. Clin Neurophysiol 110:1399–1409PubMedCrossRefGoogle Scholar
  26. Eichele T, Specht K, Moosmann M, Jongsma MLA, Quiroga RQ, Nordby H, Hugdahl K (2005) Assessing the spatiotemporal evolution of neuronal activation with single-trial event-related potentials and functional MRI. Proc Natl Acad Sci USA 102:17798PubMedCrossRefGoogle Scholar
  27. Fedor M, Berman RF, Muizelaar JP, Lyeth BG (2010) Hippocampal theta dysfunction after lateral fluid percussion injury. J Neurotrauma 27:1605–1615PubMedCrossRefGoogle Scholar
  28. Feige B, Scheffler K, Esposito F, Di Salle F, Hennig J, Seifritz E (2005) Cortical and subcortical correlates of electroencephalographic alpha rhythm modulation. J Neurophysiol 93:2864–2872PubMedCrossRefGoogle Scholar
  29. Fox MD, Raichle ME (2007) Spontaneous fluctuations in brain activity observed with functional magnetic resonance imaging. Nat Rev Neurosci 8:700–711PubMedCrossRefGoogle Scholar
  30. Fox MD, Snyder AZ, McAvoy MP, Barch DM, Raichle ME (2005) The BOLD onset transient: identification of novel functional differences in schizophrenia. Neuroimage 25:771–782PubMedCrossRefGoogle Scholar
  31. Goldman RI, Stern JM, Engel J Jr, Cohen MS (2002) Simultaneous EEG and fMRI of the alpha rhythm. Neuroreport 13:2487PubMedCrossRefGoogle Scholar
  32. Goncalves SI, De Munck JC, Pouwels PJW, Schoonhoven R, Kuijer JPA, Maurits NM, Hoogduin JM, Van Someren EJW, Heethaar RM, Lopes da Silva FH (2006) Correlating the alpha rhythm to BOLD using simultaneous EEG/fMRI: inter-subject variability. Neuroimage 30:203–213PubMedCrossRefGoogle Scholar
  33. Gruber T, Keil A, Müller MM (2001) Modulation of induced gamma band responses and phase synchrony in a paired associate learning task in the human EEG. Neurosci Lett 316:29–32PubMedCrossRefGoogle Scholar
  34. Gusnard DA, Raichle ME, Raichle ME et al (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2:685–694PubMedCrossRefGoogle Scholar
  35. Halder P, Sterr A, Brem S, Bucher K, Kollias S, Brandeis D (2005) Electrophysiological evidence for cortical plasticity with movement repetition. Eur J Neurosci 21:2271–2277PubMedCrossRefGoogle Scholar
  36. Hoge RD, Pike GB (2001) Oxidative metabolism and the detection of neuronal activation via imaging. J Chem Neuroanat 22:43–52PubMedCrossRefGoogle Scholar
  37. Ingvar DH, Sjölund B, Ardö A (1976) Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Electroencephalogr Clin Neurophysiol 41:268–276PubMedCrossRefGoogle Scholar
  38. Ingvar DH, Rosén I, Johannesson G (1979) EEG related to cerebral metabolism and blood flow. Pharmacopsychiatry 12:200–209CrossRefGoogle Scholar
  39. Jahng GH, Song E, Zhu XP, Matson GB, Weiner MW, Schuff N (2005) Human brain: reliability and reproducibility of pulsed arterial spin-labeling perfusion MR imaging1. Radiology 234:909–916PubMedCrossRefGoogle Scholar
  40. Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T (2009) BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. Neuroimage 45:903–916PubMedCrossRefGoogle Scholar
  41. Jann K, Koenig T, Dierks T, Boesch C, Federspiel A (2010) Association of individual resting state EEG alpha frequency and cerebral blood flow. Neuroimage 51:365–372PubMedCrossRefGoogle Scholar
  42. Järnum H, Steffensen EG, Knutsson L, Fründ ET, Simonsen CW, Lundbye-Christensen S, Shankaranarayanan A, Alsop DC, Jensen FT, Larsson EM (2010) Perfusion MRI of brain tumours: a comparative study of pseudo-continuous arterial spin labelling and dynamic susceptibility contrast imaging. Neuroradiology 52:307–317PubMedCrossRefGoogle Scholar
  43. Jelic V, König T, Dierks T, Nordberg A, Wahlund L-O (2002) Electroencephalography and glucose metabolism (positron-emission tomography) in dementing disorders. Methods Find Exp Clin Pharmacol 24:21PubMedGoogle Scholar
  44. Jensen O, Colgin LL (2007) Cross-frequency coupling between neuronal oscillations. Trends Cogn Sci 11:267–269PubMedCrossRefGoogle Scholar
  45. Jensen O, Gelfand J, Kounios J, Lisman JE (2002) Oscillations in the alpha band (9–12 Hz) increase with memory load during retention in a short-term memory task. Cereb Cortex 12:877–882PubMedCrossRefGoogle Scholar
  46. Jokisch D, Jensen O (2007) Modulation of gamma and alpha activity during a working memory task engaging the dorsal or ventral stream. J Neurosci 27:3244–3251PubMedCrossRefGoogle Scholar
  47. Jung TP, Makeig S, Humphries C, Lee TW, Mckeown MJ, Iragui V, Sejnowski TJ (2000a) Removing electroencephalographic artifacts by blind source separation. Psychophysiology 37:163–178PubMedCrossRefGoogle Scholar
  48. Jung TP, Makeig S, Westerfield M, Townsend J, Courchesne E, Sejnowski TJ (2000b) Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clin Neurophysiol 111:1745–1758PubMedCrossRefGoogle Scholar
  49. Kida I, Hyder F et al (2006) Physiology of functional magnetic resonance imaging: energetics and function. Methods Mol Med 124:175PubMedGoogle Scholar
  50. Kim J, Whyte J, Patel S, Europa E, Slattery J, Coslett HB, Detre JA (2012) A perfusion fMRI study of the neural correlates of sustained-attention and working-memory deficits in chronic traumatic brain injury. Neurorehabil Neural Repair 26:870–880PubMedCrossRefGoogle Scholar
  51. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Rev 29(2–3):169–195PubMedCrossRefGoogle Scholar
  52. Klimesch et al (1999) Interindividual differences in alpha and theta power reflect memory performance. Intelligence 27(4):347–362Google Scholar
  53. Kondacs A, Szabó M (1999) Long-term intra-individual variability of the background EEG in normals. Clin Neurophysiol 110:1708–1716PubMedCrossRefGoogle Scholar
  54. Koukkou M, Federspiel A, Bräker E, Hug C, Kleinlogel H, Merlo MCG, Lehmann D (2000) An EEG approach to the neurodevelopmental hypothesis of schizophrenia studying schizophrenics, normal controls and adolescents. J Psychiatr Res 34:57–73PubMedCrossRefGoogle Scholar
  55. Kranczioch C, Debener S, Herrmann CS, Engel AK (2006) EEG gamma-band activity in rapid serial visual presentation. Exp Brain Res 169:246–254PubMedCrossRefGoogle Scholar
  56. Kuhl BA, Dudukovic NM, Kahn I, Wagner AD (2007) Decreased demands on cognitive control reveal the neural processing benefits of forgetting. Nat Neurosci 10:908–914PubMedCrossRefGoogle Scholar
  57. Kuschinsky W, Bünger R, Schröck H, Mallet RT, Sokoloff L (1993) Local glucose utilization and local blood flow in hearts of awake rats. Basic Res Cardiol 88:233–249PubMedGoogle Scholar
  58. Larson CL, Davidson RJ, Abercrombie HC, Ward RT, Schaefer SM, Jackson DC, Holden JE, Perlman SB (1998) Relations between PET-derived measures of thalamic glucose metabolism and EEG alpha power. Psychophysiology 35:162–169PubMedCrossRefGoogle Scholar
  59. Laufs H, Kleinschmidt A, Beyerle A, Eger E, Salek-Haddadi A, Preibisch C, Krakow K (2003a) EEG-correlated fMRI of human alpha activity. Neuroimage 19:1463–1476PubMedCrossRefGoogle Scholar
  60. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A (2003b) Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fluctuations at rest. Proc Natl Acad Sci USA 100:11053PubMedCrossRefGoogle Scholar
  61. Laufs H, Holt JL, Elfont R, Krams M, Paul JS, Krakow K, Kleinschmidt A (2006) Where the BOLD signal goes when alpha EEG leaves. Neuroimage 31:1408–1418PubMedCrossRefGoogle Scholar
  62. Lehmann D, Skrandies W (1980) Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol 48:609–621PubMedCrossRefGoogle Scholar
  63. Lindgren KA, Larson CL, Schaefer SM, Abercrombie HC, Ward RT, Oakes TR, Holden JE, Perlman SB, Benca RM, Davidson RJ (1999) Thalamic metabolic rate predicts EEG alpha power in healthy control subjects but not in depressed patients. Biol Psychiatry 45:943–952PubMedCrossRefGoogle Scholar
  64. Lisman J (2010) Working memory: the importance of theta and gamma oscillations. Curr Biol 20(11):R490–R492PubMedCrossRefGoogle Scholar
  65. Liu X, Zhu XH, Zhang Y, Chen W (2011) Neural origin of spontaneous hemodynamic fluctuations in rats under burst-suppression anesthesia condition. Cereb Cortex 21:374–384PubMedCrossRefGoogle Scholar
  66. Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A et al (2001) Neurophysiological investigation of the basis of the fMRI signal. Nature 412:150–157PubMedCrossRefGoogle Scholar
  67. Lüchinger R, Michels L, Martin E, Brandeis D (2011) EEG-BOLD correlations during (post-) adolescent brain maturation. Neuroimage 56:1493–1505PubMedCrossRefGoogle Scholar
  68. Lüchinger R, Michels L, Martin E, Brandeis D (2012) Brain state regulation during normal development: intrinsic activity fluctuations in simultaneous EEG-fMRI. Neuroimage 60:1426–1439PubMedCrossRefGoogle Scholar
  69. Maltez J, Hyllienmark L, Nikulin VV, Brismar T (2004) Time course and variability of power in different frequency bands of EEG during resting conditions. Neurophysiol Clin 34:195–202PubMedCrossRefGoogle Scholar
  70. Mathiesen C, Caesar K, Akgören N, Lauritzen M (1998) Modification of activity-dependent increases of cerebral blood flow by excitatory synaptic activity and spikes in rat cerebellar cortex. J F Physiol 512:555–566CrossRefGoogle Scholar
  71. Maurer U, Brem S, Bucher K, Kranz F, Benz R, Steinhausen HC, Brandeis D (2007) Impaired tuning of a fast occipito-temporal response for print in dyslexic children learning to read. Brain 130:3200–3210PubMedCrossRefGoogle Scholar
  72. Mayhew SD, Macintosh BJ, Dirckx SG, Iannetti GD, Wise RG (2010) Coupling of simultaneously acquired electrophysiological and haemodynamic responses during visual stimulation. Magn Reson Imaging 28:1066–1077PubMedCrossRefGoogle Scholar
  73. Meltzer JA, Negishi M, Mayes LC, Constable RT (2007) Individual differences in EEG theta and alpha dynamics during working memory correlate with fMRI responses across subjects. Clin Neurophysiol 118:2419–2436PubMedCrossRefGoogle Scholar
  74. Meltzer JA, Fonzo GA, Constable RT (2009) Transverse patterning dissociates human EEG theta power and hippocampal BOLD activation. Psychophysiology 46:153–162PubMedCrossRefGoogle Scholar
  75. Michels L, Bucher K, Lüchinger R, Klaver P, Martin E, Jeanmonod D, Brandeis D (2010) Simultaneous EEG-fMRI during a working memory task: modulations in low and high frequency bands. PLoS One 5:e10298PubMedCrossRefGoogle Scholar
  76. Michels L, Luchinger R, Koenig T, Martin E, Brandeis D (2012) Developmental changes of BOLD signal correlations with global human EEG power and synchronization during working memory. PLoS One 7:e39447PubMedCrossRefGoogle Scholar
  77. Montez T, Poil SS, Jones BF, Manshanden I, Verbunt J, Van Dijk BW, Brussaard AB, Van Ooyen A, Stam CJ, Scheltens P et al (2009) Altered temporal correlations in parietal alpha and prefrontal theta oscillations in early-stage Alzheimer disease. Proc Natl Acad Sci USA 106:1614PubMedCrossRefGoogle Scholar
  78. Moosmann M, Ritter P, Krastel I, Brink A, Thees S, Blankenburg F, Taskin B, Obrig H, Villringer A (2003) Correlates of alpha rhythm in functional magnetic resonance imaging and near infrared spectroscopy. Neuroimage 20:145–158PubMedCrossRefGoogle Scholar
  79. Moretti DV, Babiloni C, Binetti G, Cassetta E, Dal Forno G, Ferreric F, Ferri R, Lanuzza B, Miniussi C, Nobili F et al (2004) Individual analysis of EEG frequency and band power in mild Alzheimer’s disease. Clin Neurophysiol 115:299–308PubMedCrossRefGoogle Scholar
  80. Muthukumaraswamy SD, Edden RAE, Jones DK, Swettenham JB, Singh KD (2009) Resting GABA concentration predicts peak gamma frequency and fMRI amplitude in response to visual stimulation in humans. Proc Natl Acad Sci USA 106:8356PubMedCrossRefGoogle Scholar
  81. Nagata K (1988) Topographic EEG in brain ischemia-Correlation with blood flow and metabolism. Brain Topogr 1:97–106PubMedCrossRefGoogle Scholar
  82. Näpflin M, Wildi M, Sarnthein J (2007) Test–retest reliability of resting EEG spectra validates a statistical signature of persons. Clin Neurophysiol 118:2519–2524PubMedCrossRefGoogle Scholar
  83. Niedermeyer E, Silva FHLD (2005) Electroencephalography: basic Principles, clinical applications, and related fields. Lippincott Williams & Wilkins, PhiladelphiaGoogle Scholar
  84. Niessing J, Ebisch B, Schmidt KE, Niessing M, Singer W, Galuske RAW (2005) Hemodynamic signals correlate tightly with synchronized gamma oscillations. Science 309:948–951PubMedCrossRefGoogle Scholar
  85. Nir Y, Fisch L, Mukamel R, Gelbard-Sagiv H, Arieli A, Fried I, Malach R (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:1275–1285PubMedCrossRefGoogle Scholar
  86. O’Gorman R, Coward H, Zelaya F, Alsop DC, Williams SCR (2007) Reproducibility of pseudo-continuous ASL at 1.5T and 3T. ISMRM 15:1419Google Scholar
  87. Oakes TR, Pizzagalli DA, Hendrick AM, Horras KA, Larson CL, Abercrombie HC, Schaefer SM, Koger JV, Davidson RJ (2004) Functional coupling of simultaneous electrical and metabolic activity in the human brain. Hum Brain Mapp 21:257–270PubMedCrossRefGoogle Scholar
  88. Obata T, Liu TT, Miller KL, Luh WM, Wong EC, Frank LR, Buxton RB (2004) Discrepancies between BOLD and flow dynamics in primary and supplementary motor areas: application of the balloon model to the interpretation of BOLD transients. Neuroimage 21:144–153PubMedCrossRefGoogle Scholar
  89. Ogawa S, Menon RS, Tank DW, Kim SG, Merkle H, Ellermann JM, Ugurbil K (1993) Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophys J 64:803–812PubMedCrossRefGoogle Scholar
  90. Parkes LM, Rashid W, Chard DT, Tofts PS (2004) Normal cerebral perfusion measurements using arterial spin labeling: reproducibility, stability, and age and gender effects. Magn Reson Med 51:736–743PubMedCrossRefGoogle Scholar
  91. Pilgreen KL (1995) Physiologic, medical, and cognitive correlates of electroencephalography. Neocortical dynamics and human EEG rhythms. Oxford University Press, New York, pp 195–248Google Scholar
  92. Pollack JB (1991) The induction of dynamical recognizers. Mach Learn 7:227–252Google Scholar
  93. Poulos M, Rangoussi M, Alexandris N, Evangelou A (2002) Person identification from the EEG using nonlinear signal classification. Methods Inf Med 41:64–75PubMedGoogle Scholar
  94. Raghavachari S, Kahana MJ, Rizzuto DS, Caplan JB, Kirschen MP, Bourgeois B, Madsen JR, Lisman JE (2001) Gating of human theta oscillations by a working memory task. J Neurosci 21:3175–3183PubMedGoogle Scholar
  95. Raichle ME, MacLeod AM, Snyder AZ, Powers WJ, Gusnard DA, Shulman GL (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676PubMedCrossRefGoogle Scholar
  96. Ritter P, Moosmann M, Villringer A (2009) Rolandic alpha and beta EEG rhythms’ strengths are inversely related to fMRI-BOLD signal in primary somatosensory and motor cortex. Hum Brain Mapp 30:1168–1187PubMedCrossRefGoogle Scholar
  97. Sadato N, Nakamura S, Oohashi T, Nishina E, Fuwamoto Y, Waki A, Yonekura Y (1998) Neural networks for generation and suppression of alpha rhythm: a PET study. Neuroreport 9:893PubMedCrossRefGoogle Scholar
  98. Salinsky MC, Oken BS, Morehead L (1991) Test–retest reliability in EEG frequency analysis. Electroencephalogr Clin Neurophysiol 79:382–392PubMedCrossRefGoogle Scholar
  99. Sammer G, Blecker C, Gebhardt H, Bischoff M, Stark R, Morgen K, Vaitl D (2007) Relationship between regional hemodynamic activity and simultaneously recorded EEG-theta associated with mental arithmetic-induced workload. Hum Brain Mapp 28:793–803PubMedCrossRefGoogle Scholar
  100. Sarnthein J, Stern J, Aufenberg C, Rousson V, Jeanmonod D (2006) Increased EEG power and slowed dominant frequency in patients with neurogenic pain. Brain 129:55–64PubMedCrossRefGoogle Scholar
  101. Scheeringa R, Petersson KM, Oostenveld R, Norris DG, Hagoort P, Bastiaansen M (2009) Trial-by-trial coupling between EEG and BOLD identifies networks related to alpha and theta EEG power increases during working memory maintenance. Neuroimage 44:1224–1238PubMedCrossRefGoogle Scholar
  102. Scheeringa R, Fries P, Petersson KM, Oostenveld R, Grothe I, Norris DG, Hagoort P, Bastiaansen M (2011) Neuronal dynamics underlying high-and low-frequency EEG oscillations contribute independently to the human BOLD signal. Neuron 69:572–583PubMedCrossRefGoogle Scholar
  103. Shulman RG, Rothman DL, Hyder F (2007) A BOLD search for baseline. Neuroimage 36:277–281PubMedCrossRefGoogle Scholar
  104. Speckman EJ, Elger CE, Altrup U (1993) Neurophysiologic basis of the EEG. The treatment of epilepsy: principles and practices. Lea and Febiger, PhiladelphiaGoogle Scholar
  105. Stassen HH (1980) Computerized recognition of persons by EEG spectral patterns. Electroencephalogr Clin Neurophysiol 49:190–194PubMedCrossRefGoogle Scholar
  106. Suckling J, Bullmore E (2004) Permutation tests for factorially designed neuroimaging experiments. Hum Brain Mapp 22:193–205PubMedCrossRefGoogle Scholar
  107. Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: an approach to cerebral imaging. Thieme, StuttgartGoogle Scholar
  108. Tjandra T, Brooks JCW, Figueiredo P, Wise R, Matthews PM, Tracey I (2005) Quantitative assessment of the reproducibility of functional activation measured with BOLD and MR perfusion imaging: implications for clinical trial design. Neuroimage 27:393–401PubMedCrossRefGoogle Scholar
  109. Tuladhar AM, Huurne N, Schoffelen JM, Maris E, Oostenveld R, Jensen O (2007) Parieto-occipital sources account for the increase in alpha activity with working memory load. Hum Brain Mapp 28:785–792PubMedCrossRefGoogle Scholar
  110. Tyvaert L, LeVan P, Grova C, Dubeau F, Gotman J (2008) Effects of fluctuating physiological rhythms during prolonged EEG-fMRI studies. Clin Neurophysiol 119:2762–2774PubMedCrossRefGoogle Scholar
  111. Uludag K, Dubowitz DJ, Yoder EJ, Restom K, Liu TT, Buxton RB (2004) Coupling of cerebral blood flow and oxygen consumption during physiological activation and deactivation measured with fMRI. Neuroimage 23:148–155PubMedCrossRefGoogle Scholar
  112. Van der Werf J, Jensen O, Fries P, Medendorp WP (2008) Gamma-band activity in human posterior parietal cortex encodes the motor goal during delayed prosaccades and antisaccades. J Neurosci 28:8397–8405CrossRefGoogle Scholar
  113. Vural C, Yildiz M (2010) Determination of sleep stage separation ability of features extracted from EEG signals using principle component analysis. J Med Syst 34:83–89PubMedCrossRefGoogle Scholar
  114. Wang J, Aguirre GK, Kimberg DY, Roc AC, Li L, Detre JA (2003) Arterial spin labeling perfusion fMRI with very low task frequency. Magn Reson Med 49:796–802PubMedCrossRefGoogle Scholar
  115. Wang J, Zhang Y, Wolf RL, Roc AC, Alsop DC, Detre JA (2005) Amplitude-modulated continuous arterial spin-labeling 3.0-T perfusion MR imaging with a single coil: feasibility study1. Radiology 235:218–228PubMedCrossRefGoogle Scholar
  116. Wastling SJ, O’Daly O, Zelaya O, Howard M, Alsop DC, O’Gorman RL (2009) Quantitative comparison of methods for spatial normalisation of CASL perfusion MR images. ISMRM 17:2909Google Scholar
  117. Wu WC, Fernández-Seara M, Detre JA, Wehrli FW, Wang J (2007) A theoretical and experimental investigation of the tagging efficiency of pseudocontinuous arterial spin labeling. Magn Reson Med 58:1020–1027PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • R. L. O’Gorman
    • 1
    • 3
  • S.-S. Poil
    • 1
  • D. Brandeis
    • 3
    • 4
    • 5
    • 9
  • P. Klaver
    • 6
    • 9
    • 3
    • 1
  • S. Bollmann
    • 1
  • C. Ghisleni
    • 1
  • R. Lüchinger
    • 4
  • E. Martin
    • 1
    • 3
  • A. Shankaranarayanan
    • 7
  • D. C. Alsop
    • 8
  • L. Michels
    • 1
    • 2
  1. 1.Center for MR-ResearchUniversity Children’s Hospital ZurichZurichSwitzerland
  2. 2.Institute of NeuroradiologyUniversity Hospital of ZurichZurichSwitzerland
  3. 3.Zurich Center for Integrative Human PhysiologyUniversity of ZurichZurichSwitzerland
  4. 4.Department of Child and Adolescent PsychiatryUniversity of ZürichZurichSwitzerland
  5. 5.Department of Child and Adolescent Psychiatry and PsychotherapyCentral Institute of Mental Health, Medical Faculty Mannheim/Heidelberg UniversityMannheimGermany
  6. 6.Institute of Psychology, Division of Abnormal Psychology and Clinical InterventionUniversity of ZurichZurichSwitzerland
  7. 7.GE Medical Systems, Applied Science LabMenlo ParkUSA
  8. 8.Department of RadiologyBeth Israel Deaconess Medical Center and Harvard Medical SchoolBostonUSA
  9. 9.Neuroscience Center ZurichUniversity of Zurich and ETH ZurichZurichSwitzerland

Personalised recommendations