Brain Topography

, Volume 26, Issue 1, pp 186–199 | Cite as

Physiological Aging Impacts the Hemispheric Balances of Resting State Primary Somatosensory Activities

  • Carlo Cottone
  • Leo Tomasevic
  • Camillo Porcaro
  • Giancarlo Filligoi
  • Franca Tecchio
Original Paper


To hone knowledge of sensorimotor cerebral organization changes with physiological aging, we focused on the primary somatosensory cortical area (S1). S1 neuronal pools (FS_S1) were identified by the functional source separation (FSS) algorithm applied to magnetoencephalographic recordings during median nerve stimulation. Age-dependence of FS_S1 was then studied at rest separately in the left and right hemispheres of 26 healthy, right-handed subjects between the ages of 24 and 95 years. The resting state FS_S1 spectral features changed with increasing age: (1) alpha activity slowed down; (2) total power increased only in the right hemisphere; (3) right>left interhemispheric asymmetry increased in the whole spectrum; (4) spectral entropy increased with age selectively in the left hemisphere. The present FSS-enriched electrophysiological procedure provided measures of resting state hand representation area sensitive to changes with age. Alterations were stronger in the right hemisphere. Relationships between resting state S1 activity and its responsiveness to external stimuli, revealed that the interhemispheric unbalances which emerged with age were conceivably due to an increased excitability within the right thalamocortical circuit impacting left versus right unbalances of spontaneous firing rates and of local inhibitory-excitatory networks.


Magnetoencephalography (MEG) Interhemispheric asymmetries Median nerve stimulation Functional source separation (FSS) 



The Authors thank Dr. Patrizio Pasqualetti for his support to statistical analysis. This study was supported by the following grants: (1) FISM—Fondazione Italiana Sclerosi Multipla—FaMuSNe Cod.2010/R/38; (2) FISM FaReMuS DiC diT Cod.2011/R/32; (3) Italian Ministry of Health Cod. GR-2008-1138642 ‘Promoting recovery from Stroke: Individually enriched therapeutic intervention in Acute phase’ [ProSIA]; (4) Royal Society International Joint Project—2010/R1: ‘The Key Movement Controllers: an EEG/fMRI study of the hand network dynamics [KeyMoCo]’.


  1. Allison T, Goff WR, Williamson PD, Vangilder G (1980) On the neural origin of the early components of the human somatosensory evoked potentials. In: Desmedt JE (ed) Progress in clinical neurophysiology. Karger, Basel, pp 51–68Google Scholar
  2. Arab L, Sabbagh MN (2010) Are certain lifestyle habits associated with lower Alzheimer’s disease risk? J Alzheimers Dis 20:785–794PubMedGoogle Scholar
  3. Assenza G, Zappasodi F, Squitti R, Altamura C, Ventriglia M, Ercolani M, Quattrocchi CC, Lupoi D, Passarelli F, Vernieri F, Rossini PM, Tecchio F (2009) Neuronal functionality assessed by magnetoencephalography is related to oxidative stress system in acute ischemic stroke. Neuroimage 44:1267–1273PubMedCrossRefGoogle Scholar
  4. Babiloni C, Binetti G, Cassarino A, Dal Forno G, Del Percio C, Ferreri F, Ferri R, Frisoni G, Galderisi S, Hirata K, Lanuzza B, Miniussi C, Mucci A, Nobili F, Rodriguez G, Luca Romani G, Rossini PM (2006) Sources of cortical rhythms in adults during physiological aging: a multicentric EEG study. Hum Brain Mapp 27:162–172PubMedCrossRefGoogle Scholar
  5. Barbati G, Porcaro C, Zappasodi F, Rossini PM, Tecchio F (2004) Optimization of an independent component analysis approach for artifact identification and removal in magnetoencephalographic signals. Clin Neurophysiol 115:1220–1232PubMedCrossRefGoogle Scholar
  6. Barbati G, Sigismondi R, Zappasodi F, Porcaro C, Graziadio S, Valente G, Balsi M, Rossini PM, Tecchio F (2006) Functional source separation from magnetoencephalographic signals. Hum Brain Mapp 27:925–934PubMedCrossRefGoogle Scholar
  7. Betti V, Zappasodi F, Rossini PM, Aglioti SM, Tecchio F (2009) Synchronous with your feelings: sensorimotor gamma band and empathy for pain. J Neurosci 29:12384–12392PubMedCrossRefGoogle Scholar
  8. Binkofski F, Seitz RJ, Arnold S, Classen J, Benecke R, Freund HJ (1996) Thalamic metabolism and corticospinal tract integrity determine motor recovery in stroke. Ann Neurol 39:460–470PubMedCrossRefGoogle Scholar
  9. Boakye M, Huckins SC, Szeverenyi NM, Taskey BI, Hodge CJ Jr (2000) Functional magnetic resonance imaging of somatosensory cortex activity produced by electrical stimulation of the median nerve or tactile stimulation of the index finger. J Neurosurg 93:774–783PubMedCrossRefGoogle Scholar
  10. Botez SA, Herrmann DN (2010) Sensory neuropathies, from symptoms to treatment. Curr Opin Neurol 23:502–508PubMedCrossRefGoogle Scholar
  11. Buckner RL (2004) Memory and executive function in aging and AD: multiple factors that cause decline and reserve factors that compensate. Neuron 44:195–208PubMedCrossRefGoogle Scholar
  12. Carter AR, Astafiev SV, Lang CE, Connor LT, Rengachary J, Strube MJ, Pope DL, Shulman GL, Corbetta M (2010) Resting interhemispheric functional magnetic resonance imaging connectivity predicts performance after stroke. Ann Neurol 67:365–375PubMedGoogle Scholar
  13. Catalan MJ, Honda M, Weeks RA, Cohen LG, Hallett M (1998) The functional neuroanatomy of simple and complex sequential finger movements: a PET study. Brain 121(Pt 2):253–264PubMedCrossRefGoogle Scholar
  14. Chiang AK, Rennie CJ, Robinson PA, van Albada SJ, Kerr CC (2011) Age trends and sex differences of alpha rhythms including split alpha peaks. Clin Neurophysiol 122:1505–1517PubMedCrossRefGoogle Scholar
  15. Chittajallu R, Isaac JT (2010) Emergence of cortical inhibition by coordinated sensory-driven plasticity at distinct synaptic loci. Nat Neurosci 13:1240–1248PubMedCrossRefGoogle Scholar
  16. Cichocki AAS (2002) Adaptive blind signal and image processing. Wiley, ChichesterCrossRefGoogle Scholar
  17. Clark J, Loftus A, Hammond G (2011) Age-related changes in short-interval intracortical facilitation and dexterity. Neuroreport 22:499–503PubMedCrossRefGoogle Scholar
  18. Conforto AB, Ferreiro KN, Tomasi C, dos Santos RL, Moreira VL, Marie SK, Baltieri SC, Scaff M, Cohen LG (2010) Effects of somatosensory stimulation on motor function after subacute stroke. Neurorehabilitation Neural Repair 24:263–272PubMedCrossRefGoogle Scholar
  19. Crone NE, Miglioretti DL, Gordon B, Lesser RP (1998a) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. II. Event-related synchronization in the gamma band. Brain 121(Pt 12):2301–2315Google Scholar
  20. Crone NE, Miglioretti DL, Gordon B, Sieracki JM, Wilson MT, Uematsu S, Lesser RP (1998b) Functional mapping of human sensorimotor cortex with electrocorticographic spectral analysis. I. Alpha and beta event-related desynchronization. Brain 121(Pt 12):2271–2299Google Scholar
  21. David-Jurgens M, Churs L, Berkefeld T, Zepka RF, Dinse HR (2008) Differential effects of aging on fore- and hindpaw maps of rat somatosensory cortex. PLoS One 3:e3399PubMedCrossRefGoogle Scholar
  22. Deco G, Corbetta M (2011) The dynamical balance of the brain at rest. Neuroscientist 17:107–123PubMedCrossRefGoogle Scholar
  23. Del Gratta CPV, Tecchio F, Romani G-L (2001) Magnetoencephalography—a non invasive brain imaging method with 1 ms time resolution. Rep Prog Phys 64:1759–1814CrossRefGoogle Scholar
  24. Del Gratta C, Della Penna S, Ferretti A, Franciotti R, Pizzella V, Tartaro A, Torquati K, Bonomo L, Romani GL, Rossini PM (2002) Topographic organization of the human primary and secondary somatosensory cortices: comparison of fMRI and MEG findings. Neuroimage 17:1373–1383PubMedCrossRefGoogle Scholar
  25. Demandt E, Mehring C, Vogt K, Schulze-Bonhage A, Aertsen A, Ball T (2012) Reaching movement onset- and end-related characteristics of EEG spectral power modulations. Front Neurosci 6:65PubMedCrossRefGoogle Scholar
  26. Dinse HR (2006) Cortical reorganization in the aging brain. Prog Brain Res 157:57–80PubMedCrossRefGoogle Scholar
  27. Duffy FH, Albert MS, McAnulty G, Garvey AJ (1984) Age-related differences in brain electrical activity of healthy subjects. Ann Neurol 16:430–438PubMedCrossRefGoogle Scholar
  28. Duffy FH, McAnulty GB, Albert MS (1993) The pattern of age-related differences in electrophysiological activity of healthy males and females. Neurobiol Aging 14:73–84PubMedCrossRefGoogle Scholar
  29. Ferrell WR, Crighton A, Sturrock RD (1992) Age-dependent changes in position sense in human proximal interphalangeal joints. Neuroreport 3:259–261PubMedCrossRefGoogle Scholar
  30. Forss N, Mustanoja S, Roiha K, Kirveskari E, Makela JP, Salonen O, Tatlisumak T, Kaste M (2011) Activation in parietal operculum parallels motor recovery in stroke. Hum Brain Mapp 33:534–541Google Scholar
  31. Frohlich F, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ (2006) Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. J Neurosci 26:6153–6162PubMedCrossRefGoogle Scholar
  32. Gaetz W, MacDonald M, Cheyne D, Snead OC (2010) Neuromagnetic imaging of movement-related cortical oscillations in children and adults: age predicts post-movement beta rebound. NeuroImage 51:792–807PubMedCrossRefGoogle Scholar
  33. Garcia-Larrea L, Bastuji H, Mauguiere F (1991) Mapping study of somatosensory evoked potentials during selective spatial attention. Electroencephalogr Clin Neurophysiol 80:201–214PubMedCrossRefGoogle Scholar
  34. Geyer S, Schleicher A, Zilles K (1999) Areas 3a, 3b, and 1 of human primary somatosensory cortex. Neuroimage 10:63–83PubMedCrossRefGoogle Scholar
  35. Hari R, Kaukoranta E (1985) Neuromagnetic studies of somatosensory system: principles and examples. Prog Neurobiol 24:233–256PubMedCrossRefGoogle Scholar
  36. Hikosaka O, Tanaka M, Sakamoto M, Iwamura Y (1985) Deficits in manipulative behaviors induced by local injections of muscimol in the first somatosensory cortex of the conscious monkey. Brain Res 325:375–380PubMedCrossRefGoogle Scholar
  37. Hume AL, Cant BR, Shaw NA, Cowan JC (1982) Central somatosensory conduction time from 10 to 79 years. Electroencephalogr Clin Neurophysiol 54:49–54PubMedCrossRefGoogle Scholar
  38. Huttunen J, Wikstrom H, Salonen O, Ilmoniemi RJ (1999) Human somatosensory cortical activation strengths: comparison between males and females and age-related changes. Brain Res 818:196–203PubMedCrossRefGoogle Scholar
  39. IFSECN (1974) A glossary of terms commonly used by clinical electroencephalographers. Electroencephalogr Clin Neurophysiol 37:538–548CrossRefGoogle Scholar
  40. Inouye T, Shinosaki K, Sakamoto H, Toi S, Ukai S, Iyama A, Katsuda Y, Hirano M (1991) Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr Clin Neurophysiol 79:204–210PubMedCrossRefGoogle Scholar
  41. Jones EG, Coulter JD, Hendry SH (1978) Intracortical connectivity of architectonic fields in the somatic sensory, motor and parietal cortex of monkeys. J Comp Neurol 181:291–347PubMedCrossRefGoogle Scholar
  42. Juenger H, de Haan B, Krageloh-Mann I, Staudt M, Karnath HO (2011) Early determination of somatosensory cortex in the human brain. Cereb Cortex 21:1827–1831PubMedCrossRefGoogle Scholar
  43. Jung P, Baumgartner U, Magerl W, Treede RD (2008) Hemispheric asymmetry of hand representation in human primary somatosensory cortex and handedness. Clin Neurophysiol 119:2579–2586PubMedCrossRefGoogle Scholar
  44. Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29:169–195PubMedCrossRefGoogle Scholar
  45. Korvenoja A, Kirveskari E, Aronen HJ, Avikainen S, Brander A, Huttunen J, Ilmoniemi RJ, Jaaskelainen JE, Kovala T, Makela JP, Salli E, Seppa M (2006) Sensorimotor cortex localization: comparison of magnetoencephalography, functional MR imaging, and intraoperative cortical mapping. Radiology 241:213–222PubMedCrossRefGoogle Scholar
  46. Laufer Y, Elboim-Gabyzon M (2011) Does sensory transcutaneous electrical stimulation enhance motor recovery following a stroke? A systematic review. Neurorehabil Neural Repair 25(9): 799–809Google Scholar
  47. Manning H, Tremblay F (2006) Age differences in tactile pattern recognition at the fingertip. Somatosens Motor Res 23:147–155CrossRefGoogle Scholar
  48. Marciani MG, Maschio M, Spanedda F, Caltagirone C, Gigli GL, Bernardi G (1994) Quantitative EEG evaluation in normal elderly subjects during mental processes: age-related changes. Int J Neurosci 76:131–140PubMedCrossRefGoogle Scholar
  49. McGregor KM, Zlatar Z, Kleim E, Sudhyadhom A, Bauer A, Phan S, Seeds L, Ford A, Manini TM, White KD, Kleim J, Crosson B (2011) Physical activity and neural correlates of aging: a combined TMS/fMRI study. Behav Brain Res 222:158–168PubMedCrossRefGoogle Scholar
  50. Netz J, Ziemann U, Homberg V (1995) Hemispheric asymmetry of transcallosal inhibition in man. Exp Brain Res 104:527–533PubMedCrossRefGoogle Scholar
  51. Nita DA, Cisse Y, Timofeev I, Steriade M (2006) Increased propensity to seizures after chronic cortical deafferentation in vivo. J Neurophysiol 95:902–913PubMedCrossRefGoogle Scholar
  52. Nithianantharajah J, Hannan AJ (2006) Enriched environments, experience-dependent plasticity and disorders of the nervous system. Nat Rev Neurosci 7:697–709PubMedCrossRefGoogle Scholar
  53. Nithianantharajah J, Hannan AJ (2009) The neurobiology of brain and cognitive reserve: mental and physical activity as modulators of brain disorders. Prog Neurobiol 89:369–382PubMedCrossRefGoogle Scholar
  54. Oliviero A, Tecchio F, Zappasodi F, Pasqualetti P, Salustri C, Lupoi D, Ercolani M, Romani GL, Rossini PM (2004) Brain sensorimotor hand area functionality in acute stroke: insights from magnetoencephalography. Neuroimage 23:542–550PubMedCrossRefGoogle Scholar
  55. Pakkenberg B, Gundersen HJ (1997) Neocortical neuron number in humans: effect of sex and age. J Comp Neurol 384:312–320PubMedCrossRefGoogle Scholar
  56. Patino L, Chakarov V, Schulte-Monting J, Hepp-Reymond MC, Kristeva R (2006) Oscillatory cortical activity during a motor task in a deafferented patient. Neurosci Lett 401:214–218PubMedCrossRefGoogle Scholar
  57. Pinto JG, Hornby KR, Jones DG, Murphy KM (2010) Developmental changes in GABAergic mechanisms in human visual cortex across the lifespan. Front Cell Neurosci 4:16PubMedGoogle Scholar
  58. Pizzella V, Tecchio F, Romani GL, Rossini PM (1999) Functional localization of the sensory hand area with respect to the motor central gyrus knob. Neuroreport 10:3809–3814PubMedCrossRefGoogle Scholar
  59. Porcaro C, Barbati G, Zappasodi F, Rossini PM, Tecchio F (2008) Hand sensory-motor cortical network assessed by functional source separation. Hum Brain Mapp 29:70–81PubMedCrossRefGoogle Scholar
  60. Porcaro C, Coppola G, Di Lorenzo G, Zappasodi F, Siracusano A, Pierelli F, Rossini PM, Tecchio F, Seri S (2009) Hand somatosensory subcortical and cortical sources assessed by functional source separation: an EEG study. Hum Brain Mapp 30:660–674PubMedCrossRefGoogle Scholar
  61. Radak Z, Hart N, Sarga L, Koltai E, Atalay M, Ohno H, Boldogh I (2010) Exercise plays a preventive role against Alzheimer’s disease. J Alzheimers Dis 20:777–783PubMedGoogle Scholar
  62. Riecker A, Groschel K, Ackermann H, Steinbrink C, Witte O, Kastrup A (2006) Functional significance of age-related differences in motor activation patterns. Neuroimage 32:1345–1354PubMedCrossRefGoogle Scholar
  63. Rizzolatti G, Luppino G (2001) The cortical motor system. Neuron 31:889–901PubMedCrossRefGoogle Scholar
  64. Rose L, Bakal DA, Fung TS, Farn P, Weaver LE (1994) Tactile extinction and functional status after stroke. A preliminary investigation. Stroke 25:1973–1976PubMedCrossRefGoogle Scholar
  65. Rossini PM, Tecchio F (2008) On primary cortical hand representation in the left and right hemispheres. Clin Neurophysiol 119:2421–2423PubMedCrossRefGoogle Scholar
  66. Rossini PM, Narici L, Romani GL, Traversa R, Cecchi L, Cilli M, Urbano A (1989) Short latency somatosensory evoked responses to median nerve stimulation in healthy humans: electric and magnetic recordings. Int J Neurosci 46:67–76PubMedCrossRefGoogle Scholar
  67. Rossini PM, Tecchio F, Pizzella V, Lupoi D, Cassetta E, Pasqualetti P (2001) Interhemispheric differences of sensory hand areas after monohemispheric stroke: MEG/MRI integrative study. Neuroimage 14:474–485PubMedCrossRefGoogle Scholar
  68. Sailer A, Dichgans J, Gerloff C (2000) The influence of normal aging on the cortical processing of a simple motor task. Neurology 55:979–985PubMedCrossRefGoogle Scholar
  69. Sale MV, Semmler JG (2005) Age-related differences in corticospinal control during functional isometric contractions in left and right hands. J Appl Physiol 99:1483–1493PubMedCrossRefGoogle Scholar
  70. Salerno A, Georgesco M (1996) Interhemispheric facilitation and inhibition studied in man with double magnetic stimulation. Electroencephalogr Clin Neurophysiol 101:395–403PubMedGoogle Scholar
  71. Shaw NA (1992) Age-dependent changes in central somatosensory conduction time. Clinical EEG 23:105–110CrossRefGoogle Scholar
  72. Stanley EM, Fadel JR, Mott DD (2011) Interneuron loss reduces dendritic inhibition and GABA release in hippocampus of aged rats. Neurobiol AgingGoogle Scholar
  73. Stoeckel MC, Pollok B, Schnitzler A, Seitz RJ (2007) Studying the human somatosensory hand area: a new way to compare fMRI and MEG. J Neurosci Methods 164:280–291PubMedCrossRefGoogle Scholar
  74. Szurhaj W, Derambure P (2006) Intracerebral study of gamma oscillations in the human sensorimotor cortex. Prog Brain Res 159:297–310PubMedCrossRefGoogle Scholar
  75. Talelli P, Ewas A, Waddingham W, Rothwell JC, Ward NS (2008) Neural correlates of age-related changes in cortical neurophysiology. Neuroimage 40:1772–1781PubMedCrossRefGoogle Scholar
  76. Tanosaki M, Ozaki I, Shimamura H, Baba M, Matsunaga M (1999) Effects of aging on central conduction in somatosensory evoked potentials: evaluation of onset versus peak methods. Clin Neurophysiol 110:2094–2103PubMedCrossRefGoogle Scholar
  77. Tecchio F, Zappasodi F, Pasqualetti P, Tombini M, Salustri C, Oliviero A, Pizzella V, Vernieri F, Rossini PM (2005) Rhythmic brain activity at rest from rolandic areas in acute mono-hemispheric stroke: a magnetoencephalographic study. Neuroimage 28:72–83PubMedCrossRefGoogle Scholar
  78. Tecchio F, Zappasodi F, Pasqualetti P, Tombini M, Caulo M, Ercolani M, Rossini PM (2006a) Long-term effects of stroke on neuronal rest activity in rolandic cortical areas. J Neurosci Res 83:1077–1087PubMedCrossRefGoogle Scholar
  79. Tecchio F, Zappasodi F, Tombini M, Oliviero A, Pasqualetti P, Vernieri F, Ercolani M, Pizzella V, Rossini PM (2006b) Brain plasticity in recovery from stroke: an MEG assessment. Neuroimage 32:1326–1334PubMedCrossRefGoogle Scholar
  80. Tecchio F, Graziadio S, Barbati G, Sigismondi R, Zappasodi F, Porcaro C, Valente G, Balsi M, Rossini PM (2007a) Somatosensory dynamic gamma-band synchrony: a neural code of sensorimotor dexterity. Neuroimage 35:185–193PubMedCrossRefGoogle Scholar
  81. Tecchio F, Pasqualetti P, Zappasodi F, Tombini M, Lupoi D, Vernieri F, Rossini PM (2007b) Outcome prediction in acute monohemispheric stroke via magnetoencephalography. J Neurol 254:296–305PubMedCrossRefGoogle Scholar
  82. Tecchio F, Porcaro C, Barbati G, Zappasodi F (2007c) Functional source separation and hand cortical representation for a brain-computer interface feature extraction. J Physiol 580:703–721PubMedCrossRefGoogle Scholar
  83. Tecchio F, Zappasodi F, Tombini M, Caulo M, Vernieri F, Rossini PM (2007d) Interhemispheric asymmetry of primary hand representation and recovery after stroke: a MEG study. Neuroimage 36:1057–1064PubMedCrossRefGoogle Scholar
  84. Tecchio F, Zappasodi F, Porcaro C, Barbati G, Assenza G, Salustri C, Rossini PM (2008) High-gamma band activity of primary hand cortical areas: a sensorimotor feedback efficiency index. Neuroimage 40:256–264PubMedCrossRefGoogle Scholar
  85. Tecchio F, Assenza G, Zappasodi F, Mariani S, Salustri C, Squitti R (2011) Glutamate-mediated primary somatosensory cortex excitability correlated with circulating copper and ceruloplasmin. Int J Alzheimer’s Dis 2011:292593Google Scholar
  86. Topolnik L, Steriade M, Timofeev I (2003) Partial cortical deafferentation promotes development of paroxysmal activity. Cereb Cortex 13:883–893PubMedCrossRefGoogle Scholar
  87. van den Berg FE, Swinnen SP, Wenderoth N (2011) Excitability of the motor cortex ipsilateral to the moving body side depends on spatio-temporal task complexity and hemispheric specialization. PLoS One 6:e17742PubMedCrossRefGoogle Scholar
  88. van Putten MJ (2007) The revised brain symmetry index. Clin Neurophysiol 118:2362–2367PubMedCrossRefGoogle Scholar
  89. Wall JT, Kaas JH, Sur M, Nelson RJ, Felleman DJ, Merzenich MM (1986) Functional reorganization in somatosensory cortical areas 3b and 1 of adult monkeys after median nerve repair: possible relationships to sensory recovery in humans. J Neurosci 6:218–233PubMedGoogle Scholar
  90. Wang HS, Busse EW (1969) EEG of healthy old persons—a longitudinal study. I. Dominant background activity and occipital rhythm. J Gerontol 24:419–426PubMedCrossRefGoogle Scholar
  91. Ward NS, Swayne OB, Newton JM (2008) Age-dependent changes in the neural correlates of force modulation: an fMRI study. Neurobiol Aging 29:1434–1446PubMedCrossRefGoogle Scholar
  92. White LE, Andrews TJ, Hulette C, Richards A, Groelle M, Paydarfar J, Purves D (1997) Structure of the human sensorimotor system. II: Lateral symmetry. Cereb Cortex 7:31–47PubMedCrossRefGoogle Scholar
  93. Wilson TW, Slason E, Asherin R, Kronberg E, Reite ML, Teale PD, Rojas DC (2010) An extended motor network generates beta and gamma oscillatory perturbations during development. Brain Cogn 73:75–84PubMedCrossRefGoogle Scholar
  94. Zappasodi F, Pasqualetti P, Tombini M, Ercolani M, Pizzella V, Rossini PM, Tecchio F (2006) Hand cortical representation at rest and during activation: gender and age effects in the two hemispheres. Clin Neurophysiol 117:1518–1528PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Carlo Cottone
    • 1
  • Leo Tomasevic
    • 1
    • 4
  • Camillo Porcaro
    • 1
    • 5
  • Giancarlo Filligoi
    • 3
  • Franca Tecchio
    • 1
    • 2
  1. 1.LET’S-ISTC-CNR, Department of NeuroscienceFatebenefratelli Hospital-Isola TiberinaRomeItaly
  2. 2.Department of NeuroimagingIRCCS San Raffaele PisanaRomeItaly
  3. 3.Department of Information, Electronic and Telecommunication Engineering (DIET), Faculty I3sUniversity of Roma ‘Sapienza’RomeItaly
  4. 4.AFaR, Department of NeuroscienceFatebenefratelli Hospital-Isola TiberinaRomeItaly
  5. 5.Institute of Neuroscience, Medical SchoolNewcastle UniversityNewcastle upon TyneUK

Personalised recommendations