Skip to main content
Log in

Quantitative Evaluation of Activation State in Functional Brain Imaging

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Neuronal activity can evoke the hemodynamic change that gives rise to the observed functional magnetic resonance imaging (fMRI) signal. These increases are also regulated by the resting blood volume fraction (V 0) associated with regional vasculature. The activation locus detected by means of the change in the blood-oxygen-level-dependent (BOLD) signal intensity thereby may deviate from the actual active site due to varied vascular density in the cortex. Furthermore, conventional detection techniques evaluate the statistical significance of the hemodynamic observations. In this sense, the significance level relies not only upon the intensity of the BOLD signal change, but also upon the spatially inhomogeneous fMRI noise distribution that complicates the expression of the results. In this paper, we propose a quantitative strategy for the calibration of activation states to address these challenging problems. The quantitative assessment is based on the estimated neuronal efficacy parameter \(\epsilon\) of the hemodynamic model in a voxel-by-voxel way. It is partly immune to the inhomogeneous fMRI noise by virtue of the strength of the optimization strategy. Moreover, it is easy to incorporate regional vascular information into the activation detection procedure. By combining MR angiography images, this approach can remove large vessel contamination in fMRI signals, and provide more accurate functional localization than classical statistical techniques for clinical applications. It is also helpful to investigate the nonlinear nature of the coupling between synaptic activity and the evoked BOLD response. The proposed method might be considered as a potentially useful complement to existing statistical approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ali MM, Törn A, Viitanen S (1997) A numerical comparison of some modified controlled random search algorithms. J Glob Optim 11:377–385

    Article  Google Scholar 

  • Buxton RB, Frank LR (1997) A model for the coupling between cerebral blood flow and oxygen metabolism during neural stimulation. J Cereb Blood Flow Metab 17:64–72

    Article  PubMed  CAS  Google Scholar 

  • Buxton RB, Wong EC, Frank LR (1998) Dynamics of blood flow and oxygenation changes during brain activation: the balloon model. Magn Reson Med 39:855–864

    Article  PubMed  CAS  Google Scholar 

  • Deneux T, Faugeras O (2006) Using nonlinear models in fMRI data analysis: model selection and activation detection. NeuroImage 32:1669–1689

    Article  PubMed  Google Scholar 

  • Disbrow EA, Slutsky DA, Roberts TPL, Krubitzer LA (2000) Functional MRI at 1.5 Tesla: a comparison of the blood oxygenation level dependent signal and electrophysiology. Proc Natl Acad Sci USA 97(17):9718–9723

    Article  PubMed  CAS  Google Scholar 

  • Du YP, Dalwani M, Wylie K, Claus E, Tregellas JR (2007) Reducing susceptibility artifacts in fMRI using volume selective Z-shim compensation. Magn Reson Med 57:396–404

    Article  PubMed  Google Scholar 

  • Friston KJ (2002) Nonlinear responses in fMRI: Bayesian estimation of dynamical systems: an application to fMRI. NeuroImage 16:513–530

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Jezzard P, Turner R (1994) Analysis of functional MRI time-series. Hum Brain Mapp 1:153–171

    Article  Google Scholar 

  • Friston KJ, Mechelli A, Turner R, Price CJ (2000) Nonlinear responses in fMRI: the balloon model, Volterra kernels, and other hemodynamics. NeuroImage 12:466–477

    Article  PubMed  CAS  Google Scholar 

  • Friston KJ, Harrison L, Penny W (2003) Dynamic causal modeling. NeuroImage 19:1273–1302

    Article  PubMed  CAS  Google Scholar 

  • Hermosillo G, Chefd’hotel C, Faugeras O (2002) Variational methods for multimodel image matching. Int J Comput Vis 50(3):329–343

    Article  Google Scholar 

  • Hu ZH, Shi PC (2007) Nonlinear analysis of BOLD signal: biophysical modeling, physiological states, and functional activation. In: 10th International conference on medical image computing and computer assisted intervention (MICCAI), Brisbane, Australia, pp 734–741

  • Hu ZH, Shi PC (2010) Sensitivity Analysis for Biomedical Models. IEEE Trans Med Imaging 29(11):1870–1881

    Article  PubMed  Google Scholar 

  • Hu ZH, Zhao XH, Liu HF, Shi PC (2009a) Nonlinear analysis of the BOLD signal. EURASIP J Adv Signal Process 2009:1–13

    Article  Google Scholar 

  • Hu ZH, Fang X, Shen XY, Shi PC (2009b) Exploiting MR venography segmentation for the accurate model estimation of BOLD signal. In: 6th IEEE international symposium on biomedical imaging (ISBI), Boston, MA, USA, pp 706–709

  • Hu ZH, Liu C, Shi PC, Liu HF (2012) Exploiting magnetic resonance angiography imaging improves model estimation of BOLD signal. PLoS ONE 7(2):e31612

    Article  PubMed  CAS  Google Scholar 

  • Jezzard P, Matt PM, Smith SM (2001) Functional MRI: an introduction to methods. Oxford University Press, New York

    Google Scholar 

  • Johnston LA, Duff E, Egan GF (2006) Particle filtering for nonlinear BOLD signal analysis. In: 9th International conference on medical image computing and computer assisted intervention (MICCAI), Copenhagen, Denmark, pp 292–299

  • Johnston LA, Duff E, Mareels I, Egan GF (2008) Nonlinear estimation of the BOLD signal. NeuroImage 40:504–514

    Article  PubMed  Google Scholar 

  • Kim SG (2003) Progress in understanding functional imaging signals. Proc Natl Acad Sci USA 100(7):3550–3552

    Article  PubMed  CAS  Google Scholar 

  • Kim SG, Ogawa S (2002) Insights into new techniques for high resolution functional MRI. Curr Opin Neurobiol 12:607–615

    Article  PubMed  CAS  Google Scholar 

  • Kim DS, Duong TQ, Kim SG (2000) High-resolution mapping of iso-orientation columns by fMRI. Nat Neurosci 3:164–169

    Article  PubMed  CAS  Google Scholar 

  • Li XF, Marrelec G, Hess RF, Benali H (2010) A nonlinear identification method to study effective connectivity in functional MRI. Med Image Anal 14:30–38

    Article  PubMed  Google Scholar 

  • Lu HZ, Law M, Johnson G, Ge Y, van Zijl PCM, Helpern JA (2005) Novel approach to the measurement of absolute cerebral blood volume using vascular-space-occupancy magnetic resonance imaging. Magn Reson Med 54:1403–1411

    Article  PubMed  Google Scholar 

  • Price WL (1977) A controlled random search procedure for global optimization. Comput J 20:367–370

    Article  Google Scholar 

  • Purdon PL, Weisskoff RM (1998) Effect of temporal autocorrelation due to physiological noise and stimulus paradigm on voxel-level false-positive rates in fMRI. Hum Brain Mapp 6(4):239–249

    Article  PubMed  CAS  Google Scholar 

  • Riera JJ, Watanabe J, Kazuki I, Naoki M, Aubert E, Ozaki T, Kawashima R (2004) A state-space model of the hemodynamic approach: nonlinear filtering of BOLD signals. NeuroImage 21:547–567

    Article  PubMed  Google Scholar 

  • Stephan KE, Kasper L, Harrison LM, Daunizeau J, Ouden HEM, Breakspear M, Friston KJ (2008) Nonlinear dynamic causal models for fMRI. NeuroImage 42:649–662

    Article  PubMed  Google Scholar 

  • Tsoulos IG, Lagaris IE (2006) Genetically controlled random search: a global optimization method for continuous multidimensional functions. Comput Phys Commun 174:152–159

    Article  CAS  Google Scholar 

  • Wan XH, Riera J, Iwara K, Takahashi M, Wakabayashi T, Kawashima R (2006) The neuronal basis of the hemodynamic response nonlinearity in human primary visual cortex: implications for neurovascular coupling mechanism. NeuroImage 32:616–625

    Article  PubMed  Google Scholar 

  • Worsley KJ, Liao CH, Aston J, Petre V, Duncan GH, Morales F, Evans AC (2002) A general statistical analysis for fMRI data. NeuroImage 15:1–15

    Article  PubMed  CAS  Google Scholar 

  • Yip CY, Fessler JA, Noll DC (2006) Advanced three-dimensional tailored RF pulse for signal recovery in T *2 -weighted functional magnetic resonance imaging. Magn Reson Med 56:1050–1059

    Article  PubMed  Google Scholar 

  • Yoon A, Khargonekars P, Arbor A (1997) Computational experiments in robust stability analysis. In: Proceedings of the 36th IEEE conference on decision and control, vol 4, San Diego, CA, USA, pp 3260–3265

  • Yoon A, Khargonekars P, Arbor A (1998) Randomized algorithm for a certain real µ computation problem. In: Proceedings of the American control conference, vol 5, Philadelphia, PA, USA, pp 2824–2828

  • Zhang J, Chen HF, Fang F, Liao W (2010) Convolution power spectrum analysis for fMRI data based on prior image signal. IEEE Trans Biomed Eng 57(2):343–352

    Article  PubMed  Google Scholar 

  • Zhao XH, Wang PJ, Li CB, Hu ZH, Xi Q, Wang WY, Tang XW (2007) Altered default mode network activity in patient with anxiety disorders: an fMRI study. Eur J Radiol 63(3):373–378

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the editor and two anonymous referees for their insightful suggestions and valuable comments, which helped to improve the quality of our presented work. This work is supported in part by the National Basic Research Program of China under Grant 2010CB732500, in part by the National High Technology Research and Development Program of China under Grant 2012AA011603, in part by the National Natural Science Foundation of China under Grant 30800250.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenghui Hu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, Z., Ni, P., Liu, C. et al. Quantitative Evaluation of Activation State in Functional Brain Imaging. Brain Topogr 25, 362–373 (2012). https://doi.org/10.1007/s10548-012-0230-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0230-5

Keywords

Navigation