Skip to main content
Log in

Emotions, Arousal, and Frontal Alpha Rhythm Asymmetry During Beethoven’s 5th Symphony

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Music is capable of inducing emotional arousal. While previous studies used brief musical excerpts to induce one specific emotion, the current study aimed to identify the physiological correlates of continuous changes in subjective emotional states while listening to a complete music piece. A total of 19 participants listened to the first movement of Ludwig van Beethoven’s 5th symphony (duration: ~7.4 min), during which a continuous 76-channel EEG was recorded. In a second session, the subjects evaluated their emotional arousal during the listening. A fast fourier transform was performed and covariance maps of spectral power were computed in association with the subjective arousal ratings. Subjective arousal ratings had good inter-individual correlations. Covariance maps showed a right-frontal suppression of lower alpha-band activity during high arousal. The results indicate that music is a powerful arousal-modulating stimulus. The temporal dynamics of the piece are well suited for sequential analysis, and could be necessary in helping unfold the full emotional power of music.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Aftanas LI, Golocheikine SA (2001) Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett 310:57–60

    Article  PubMed  CAS  Google Scholar 

  • Aftanas L, Varlamov AA, Pavlov SV, Makhnev VP, Reva NV (2002) Time-dependent cortical asymmetries induced by emotional arousal: EEG analysis of event-related synchronization and desynchronization in individually defined frequency bands. Int J Psychphysiol 44:67–82

    Article  Google Scholar 

  • Allen JJ, Coan JA, Nazarian M (2004) Issues and assumptions on the road from raw signals to metrics of frontal EEG asymmetry in emotion. Biol Psychol 67:183–218

    Article  PubMed  Google Scholar 

  • Barry RJ, Clarke AR, Johnstone SJ, Magee CA, Rushby JA (2007) EEG differences between eyes-closed and eyes-open resting conditions. Clin Neurophysiol 118:2765–2773

    Article  PubMed  Google Scholar 

  • Bigand E, Tillmann B, Poulin-Charronnat B (2006) A module for syntactic processing in music? Trends Cogn Sci 10(5):195–196

    Article  PubMed  Google Scholar 

  • Blood AJ, Zatorre RJ (2001) Intensely pleasurable responses to music correlate with activity in brain regions implicated in reward and emotion. Proc Natl Acad Sci 20:11818–11823

    Article  Google Scholar 

  • Blood AJ, Zatorre RJ, Bermudez P, Evans AC (1999) Emotional responses to pleasant and unpleasant music correlate with activity in paralimbic brain regions. Nat Neurosci 2(4):382–387

    Article  PubMed  CAS  Google Scholar 

  • Coan JA, Allan JJ (2004) Frontal EEG asymmetry as a moderator and mediator of emotion. Biol Psychol 67:7–49

    Article  PubMed  Google Scholar 

  • Craig AD (2005) Forebrain emotional asymmetry: a neuroanatomical basis? Trends Cogn Sci 9:566–571

    Article  PubMed  Google Scholar 

  • Davidson RJ (1995) Brain asymmetry. MIT Press, Cambridge

    Google Scholar 

  • Davidson RJ (2004) What does the prefrontal cortex “do” in affect: perspectives on frontal EEG asymmetry research. Biol Psychol 67:219–233

    Article  PubMed  Google Scholar 

  • Dellacherie D, Hugueville RL, Peretz I, Samson S (2010) The effect of musical experience on emotional self-reports and psychophysiological responses to dissonance. Psychophysiology 48(3):337–349

    Article  Google Scholar 

  • Delorme A, Sejnowski T, Makeig S (2007) Enhanced detection of artifacts in EEG data using higher-order statistics and independent component analysis. NeuroImage 34(4):1443–1449

    Article  PubMed  Google Scholar 

  • Eldar E, Ganor O, Admon R, Bleich A, Hendler T (2007) Feeling the real world: limbic response to music depends on related content. Cereb Cortex 17(12):2828–2840

    Article  PubMed  Google Scholar 

  • Flores-Gutierrez EO, Diaz JL, Barrios FA, Favila-Humara R, Guevara MA, del Rio-Portilla Y, Corsi-Cabrera M (2007) Metabolic and electric brain patterns during pleasant and unpleasant emotions induced by music masterpieces. Int J Psychophysiol 65:69–84

    Article  PubMed  Google Scholar 

  • Frego R (1999) Effects of aural and visual conditions on response to perceived artistic tension in music and dance. J Res Music Edu 47:31–43

    Article  Google Scholar 

  • Gable PA, Harmon-Jones E (2009) Postauricular reflex responses to pictures varying in valence and arousal. Psychophysiology 46(3):487–490

    Article  PubMed  Google Scholar 

  • Gosselin N, Samson S, Adolphs R, Noulhiane M, Roy M, Hasboun D, Baulac M, Peretz I (2006) Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain J Neurol 129:2585–2592

    Article  Google Scholar 

  • Gosselin N, Peretz I, Johnsen E, Adolphs R (2007) Amygdala damage impairs emotion recognition from music. Neuropsychologia 45:236–244

    Article  PubMed  Google Scholar 

  • Granot R, Eitian Z (2011) Musical tension and the interaction of dynamic auditory parameters. Music Percept 28(3):219–245

    Article  Google Scholar 

  • Hailstone JC, Omar R, Henley SM, Frost C, Kenward MG, Warren JD (2009) It’s not what you play, it’s how you play it: timbre affects perception of emotion in music. Q J Exp Psychol 62(11):1–15

    Google Scholar 

  • Heller W, Nitschke JB, Lindsay DL (1997) Neuropsychological correlates of arousal in self-reported emotion. Cogn Emotion 11(4):383–402

    Article  Google Scholar 

  • Huron D (2001) Is music an evolutionary adaptation? Ann N Y Acad Sci 930:43–61

    Article  PubMed  CAS  Google Scholar 

  • Huron D (2006) Sweet anticipation. MIT Press, Cambridge

    Google Scholar 

  • Ilie G, Thompson W (2006) A comparison of the acoustic cues in music nd speech for three dimensions of affect. Music Percept 23:319–329

    Article  Google Scholar 

  • James CE, Britz J, Vuilleimier P, Hauert CA, Michel CM (2008) Early neuronal responses in right limbic structures mediate harmony incongruity processing in musical experts. Neuroimage 42(4):1597–1608

    Article  PubMed  Google Scholar 

  • Jann K, Dierks T, Boesch C, Kottlow M, Strik W, Koenig T (2009) BOLD correlates of EEG alpha phase-locking and the fMRI default mode network. NeuroImage 45(3):903–916

    Article  PubMed  CAS  Google Scholar 

  • Jann K, Kottlow M, Dierks T, Boesch C, Koenig T (2010) Topographic electrophysiological signatures of FMRI resting state networks. PLoS ONE 5(9):e12945

    Article  PubMed  Google Scholar 

  • Juslin PN, Vastfjall D (2008) Emotional responses to music: the need to consider underlying mechanisms. Behav Brain Sci 31(5):559–621

    PubMed  Google Scholar 

  • Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195

    Article  PubMed  CAS  Google Scholar 

  • Klimesch W, Doppelmayr M, Russegger H, Pachinger T, Schwaiger J (1998) Induced alpha band power changes in the human EEG and attention. Neurosci Lett 244(2):73–76

    Article  PubMed  CAS  Google Scholar 

  • Klimesch W, Doppelmayr M, Hanlsmayr S (2006) Upper alpha ERD absolute power: their meaning for memory performance. Prog Brain Res 159:151–165

    Article  PubMed  Google Scholar 

  • Koelsch S (2005) Investigating emotion with music: neuroscientific approaches. Ann N Y Acad Sci 1060:412–418

    Article  PubMed  Google Scholar 

  • Koelsch S (2009) A neuroscientific perspective on music therapy. Ann N Y Acad Sci 1169:374–384

    Article  PubMed  Google Scholar 

  • Koelsch S, Fritz T, v. Cramon DY, Muller K, Friederici AD (2006) Investigating emotion with music: an fMRI study. Hum Brain Mapp 27(3):239–250

    Article  PubMed  Google Scholar 

  • Koelsch S, Fritz T, Schlaug G (2008) Amygdala activity can be modulated by unexpected chord functions during music listening. NeuroReport 19(18):1815–1819

    Article  PubMed  Google Scholar 

  • Koenig T, Melie-Garcia L (2010) A method to determine the presence of averaged event-related fields using randomization tests. Brain Topogr 23(3):233–242

    Article  PubMed  Google Scholar 

  • Koenig T, Melie-Garcia L, Stein M, Strik W, Lehmann C (2008) Establishing correlations of scalp field maps with other experimental variables using covariance analysis and resampling methods. Clin Neurophysiol 119:1262–1270

    Article  PubMed  Google Scholar 

  • Krause CM (2006) Cognition- and memory-related ERD/ERS responses in the auditory stimulus modality. Prog Brain Res 159:197–207

    Article  PubMed  Google Scholar 

  • Krumhansl C (1995) Music psychology and music theory: problems and prospects. Music Theory Spectr 17(1):53–80

    Article  Google Scholar 

  • Krumhansl C (1997) An exploratory study of musical emotions and psychophysiology. Can J Exp Psychol 51(4):336–352

    Article  PubMed  CAS  Google Scholar 

  • Krumhansl C (2003) Experimental strategies for understanding the role of experience in music cognition. Ann N Y Acad Sci 999:414–428

    Article  PubMed  Google Scholar 

  • Lee KM, Skoe E, Kraus N, Ashley R (2009) Selective subcortical enhancement of musical intervals in musicians. J Neurosci 29(18):5832–5840

    Article  PubMed  CAS  Google Scholar 

  • Madson AT, Silverman MJ (2010) The effect of music therapy on relaxation, anxiety, pain perception, and nausea in adult solid organ transplant patients. J Music Ther 47(3):220–232

    PubMed  Google Scholar 

  • Meadows ME, Kaplan RF (1994) Dissociation of autonomic and subjective responses to emotional slides in right hemisphere damaged patients. Neuropsychologia 32:847–856

    Article  PubMed  CAS  Google Scholar 

  • Menon V, Levitin DJ (2005) The rewards of music listening: response and physiological connectivity of the mesolimbic system. NeuroImage 28(1):175–184

    Article  PubMed  CAS  Google Scholar 

  • Meyer L (1956) Emotion and meaning in music. University of Chicago Press, Chicago

    Google Scholar 

  • Moradipanah F, Mohammadi E, Mohammadil AZ (2009) Effect of music on anxiety, stress, and depression levels in patients undergoing coronary angiography. East Mediterr Health J 15(3):639–647

    PubMed  CAS  Google Scholar 

  • Muller TJ, Federspiel A, Fallgatter AJ, Strik WK (1999) EEG signs of vigilance fluctuations preceding perceptual flips in multistable illusionary motion. NeuroReport 10(16):3423–3427

    Article  PubMed  CAS  Google Scholar 

  • Narmour E (1990) The analysis and cognition of basic melodic structures. University of Chicago Press, Chicago

    Google Scholar 

  • Nitschke JB, Heller W, Palmieri PA, Miller GA (1999) Contrasting patterns of brain activity in anxious apprehension and anxious arousal. Psychophysiology 36:628–637

    Article  PubMed  CAS  Google Scholar 

  • Ochsner KN, Ray RR, Hughes B, McRae K, Cooper JC, Weber J, Gabrieli JD, Gross JJ (2009) Bottom–up and top–down processes in emotion generation: common and distinct neural mechanisms. Psychol Sci 20:1322–1331

    Article  PubMed  Google Scholar 

  • Panksepp J, Bernatzky G (2002) Emotional sounds and the brain: the neuro-affective foundations of musical appreciation. Behav Proc 60:133–155

    Article  Google Scholar 

  • Patel AD (2003) Language, music, syntax and the brain. Nat Neurosci 6(7):674–681

    Article  PubMed  CAS  Google Scholar 

  • Pfurtscheller G (2006) The cortical activation model (CAM). Prog Brain Res 159:19–27

    Article  PubMed  Google Scholar 

  • Russel J (1980) A circumplex model of affect. J Pers Soc Psychol 39(6):1161–1178

    Article  Google Scholar 

  • Salimpoor VN, Benovoy M, Longo G, Cooperstock JR, Zatorre RJ (2009) The rewarding aspects of music listening are related to degree of emotional arousal. PLoS ONE 4(10):e7487

    Article  PubMed  Google Scholar 

  • Sammler D, Grigutsch M, Fritz T, Koelsch S (2007) Music and emotion: electrophysiological correlates of the processing of pleasant and unpleasant music. Psychophysiology 44(2):293–304

    Article  PubMed  Google Scholar 

  • Sarter M, Givens B, Bruno JP (2001) The cognitive neuroscience of sustained attention: where top–down meets bottom–up. Brain Res Brain Res Rev 35:146–160

    Article  PubMed  CAS  Google Scholar 

  • Scherer KR (1995) Expression of emotion in voice and music. J Voice 9(3):235–248

    Article  PubMed  CAS  Google Scholar 

  • Schubert E (2004) Modeling perceived emotion with continuous musical features. Music Percept 21:561–585

    Article  Google Scholar 

  • Steinbeis N, Koelsch S, Sloboda JA (2006) The role of harmonic expectancy violations in musical emotions: evidence from subjective, physiological, and neural responses. J Cogn Neurosci 18:1380–1393

    Article  PubMed  Google Scholar 

  • Suetsugi M, Mizuki Y, Ushijima I, Kobayashi T, Tsuchiya K, Aoki T (2000) Appearance of frontal midline theta activity in patients with generalized anxiety disorder. Neuropsychobiology 41:108–112

    Article  PubMed  CAS  Google Scholar 

  • Tsang CD, Trainor LJ, Santesso DL, Tasker SL, Schmidt L, Aalto S (2001) Frontal EEG responses as a function of affective musical features. Ann N Y Acad Sci 930:439–442

    Article  PubMed  CAS  Google Scholar 

  • Tsuno N, Shigeta M, Hyoki K, Faber PL, Lehmann D (2004) Fluctuations of source locations of EEG activity during transition from alertness to sleep in Alzheimer’s disease and vascular dementia. Neuropsychobiology 50(3):267–272

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Li C, Yin Y, Zhou C, Yao D (2010). Music composition from the brain signal: representing the mental state by music. Comput Intell Neurosci. doi:10.1155/2010/267671

  • Zare M, Ebrahimi AA, Birashk B (2010) The effects of music therapy on reducing agitation in patients with Alzheimer’s disease, a pre-post study. Int J Geriatr Psychiatry 25(12):1309–1310

    Article  PubMed  Google Scholar 

  • Zendel BR, Alain C (2009) Concurrent sound segregation is enhanced in musicians. J Cogn Neurosci 21(8):1488–1498

    Article  PubMed  Google Scholar 

  • Zentner M, Grandjean D, Scherer KR (2008) Emotions evoked by the sound of music: characterization, classification, and measurement. Emotion 8(4):494–521

    Article  PubMed  Google Scholar 

  • Zhang J, Zhou R, Oei T (2011) The effects of valence and arousal on hemispheric asymmetry of emotion: evidence from event-related potentials. J Psychophysiol 25:95–103

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian Mikutta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mikutta, C., Altorfer, A., Strik, W. et al. Emotions, Arousal, and Frontal Alpha Rhythm Asymmetry During Beethoven’s 5th Symphony. Brain Topogr 25, 423–430 (2012). https://doi.org/10.1007/s10548-012-0227-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0227-0

Keywords

Navigation