Skip to main content
Log in

Processing of Coherent Visual Motion in Topographically Organized Visual Areas in Human Cerebral Cortex

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Recent imaging studies in human subjects have demonstrated representations of global visual motion in medial parieto-occipital cortex (area V6) and posterior parietal cortex, the latter containing at least seven topographically organized areas along the intraparietal sulcus (IPS0–IPS5, SPL1). In this fMRI study we used topographic mapping procedures to delineate a total of 18 visual areas in human cerebral cortex and tested their responsiveness to coherent visual motion under conditions of controlled attention and fixation. Preferences for coherent visual motion as compared to motion noise as well as hemispheric asymmetries were assessed for contralateral, ipsilateral, and bilateral visual motion presentations. Except for areas V1–V4 and IPS3-5, all other areas showed stronger responses to coherent motion with the most significant activations found in V6, followed by MT/MST, V3A, IPS0-2 and SPL1. Hemispheric differences were negligible altogether suggesting that asymmetries in parietal cortex observed in cognitive tasks do not reflect differences in basic visual response properties. Interestingly, areas V6, MST, V3A, and areas along the intraparietal sulcus showed specific representations of coherent visual motion not only when presented in the hemifield primarily covered by the given visual representation but also when presented in the ipsilateral visual field. This finding suggests that coherent motion induces a switch in spatial representation in specialized motion areas from contralateral to full-field coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

BOLD:

blood oxygen level-dependent

EPI:

Echo planar imaging

fMRI:

Functional magnetic resonance imaging

IPS:

Intraparietal sulcus

LOS/LOC:

Lateral occipital sulcus/complex

MST:

Medial superior temporal area

MT:

Middle temporal area

MT+ complex:

Middle temporal complex

pITS:

Posterior part of the inferior temporal sulcus

POIPS:

Parieto-occipital intraparietal sulcus

PSC:

Percent signal change

ROI:

Region of interest

SPL:

Superior parietal lobe

TOS:

Transverse occipital sulcus

VIP:

Ventral intraparietal area

References

  • Allman JM, Kaas JH (1971) Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). Brain Res 35(1):89–106

    Article  CAS  PubMed  Google Scholar 

  • Amano K, Wandell BA, Dumoulin SO (2009) Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. J Neurophysiol 102(5):2704–2718

    Article  PubMed  Google Scholar 

  • Andersen RA (1989) Visual and eye movement functions of the posterior parietal cortex. Annu Rev Neurosci 12:377–403

    Article  CAS  PubMed  Google Scholar 

  • Astafiev SV, Shulman GL, Stanley CM, Snyder AZ, Van Essen DC, Corbetta M (2003) Functional organization of human intraparietal and frontal cortex for attending, looking, and pointing. J Neurosci 23(11):4689–4699

    CAS  PubMed  Google Scholar 

  • Becker HG, Erb M, Haarmeier T (2008) Differential dependency on motion coherence in subregions of the human MT+ complex. Eur J Neurosci 28(8):1674–1685

    Article  PubMed  Google Scholar 

  • Born RT, Bradley DC (2005) Structure and function of visual area MT. Annu Rev Neurosci 28:157–189

    Article  CAS  PubMed  Google Scholar 

  • Braddick OJ, O’Brien JM, Wattam-Bell J, Atkinson J, Hartley T, Turner R (2001) Brain areas sensitive to coherent visual motion. Perception 30(1):61–72

    Article  CAS  PubMed  Google Scholar 

  • Brandt T, Bartenstein P, Janek A, Dieterich M (1998) Reciprocal inhibitory visual-vestibular interaction. Visual motion stimulation deactivates the parieto-insular vestibular cortex. Brain 121(Pt 9):1749–1758

    Article  PubMed  Google Scholar 

  • Bremmer F, Schlack A, Shah NJ, Zafiris O, Kubischik M, Hoffmann K, Zilles K, Fink GR (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29(1):287–296

    Article  CAS  PubMed  Google Scholar 

  • Cardin V, Smith AT (2010) Sensitivity of human visual and vestibular cortical regions to egomotion-compatible visual stimulation. Cereb Cortex 20(8):1964–1973

    Article  PubMed  Google Scholar 

  • Cavada C (2001) The visual parietal areas in the macaque monkey: current structural knowledge and ignorance. Neuroimage 14(1 Pt 2):S21–S26

    Article  CAS  PubMed  Google Scholar 

  • Cohen J (1988) Statistical power analysis for the behavioral sciences, 2nd edn. Erlbaum, Hillsdale

    Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1993) The analysis of visual space by the lateral intraparietal area of the monkey: the role of extraretinal signals. Prog Brain Res 95:307–316

    Article  CAS  PubMed  Google Scholar 

  • Deichmann R, Schwarzbauer C, Turner R (2004) Optimisation of the 3D MDEFT sequence for anatomical brain imaging: technical implications at 1.5 and 3 T. Neuroimage 21(2):757–767

    Article  CAS  PubMed  Google Scholar 

  • Desimone R, Ungerleider LG (1986) Multiple visual areas in the caudal superior temporal sulcus of the macaque. J Comp Neurol 248(2):164–189

    Article  CAS  PubMed  Google Scholar 

  • DeYoe EA, Carman GJ, Bandettini P, Glickman S, Wieser J, Cox R, Miller D, Neitz J (1996) Mapping striate and extrastriate visual areas in human cerebral cortex. Proc Natl Acad Sci USA 93(6):2382–2386

    Article  CAS  PubMed  Google Scholar 

  • Dubner R, Zeki SM (1971) Response properties and receptive fields of cells in an anatomically defined region of the superior temporal sulcus in the monkey. Brain Res 35(2):528–532

    Article  CAS  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79(1):126–136

    CAS  PubMed  Google Scholar 

  • Dukelow SP, DeSouza JF, Culham JC, van den Berg AV, Menon RS, Vilis T (2001) Distinguishing subregions of the human MT+ complex using visual fields and pursuit eye movements. J Neurophysiol 86(4):1991–2000

    CAS  PubMed  Google Scholar 

  • Dumoulin SO, Bittar RG, Kabani NJ, Baker CL Jr, Le Goualher G, Bruce Pike G, Evans AC (2000) A new anatomical landmark for reliable identification of human area V5/MT: a quantitative analysis of sulcal patterning. Cereb Cortex 10(5):454–463

    Article  CAS  PubMed  Google Scholar 

  • Engel SA, Rumelhart DE, Wandell BA, Lee AT, Glover GH, Chichilnisky EJ, Shadlen MN (1994) fMRI of human visual cortex. Nature 369(6481):525

    Article  CAS  PubMed  Google Scholar 

  • Evangeliou MN, Raos V, Galletti C, Savaki HE (2009) Functional imaging of the parietal cortex during action execution and observation. Cereb Cortex 19(3):624–639

    Article  PubMed  Google Scholar 

  • Fattori P, Galletti C, Battaglini PP (1992) Parietal neurons encoding visual space in a head-frame of reference. Boll Soc Ital Biol Sper 68(11):663–670

    CAS  PubMed  Google Scholar 

  • Fattori P, Pitzalis S, Galletti C (2009) The cortical visual area V6 in macaque and human brains. J Physiol Paris 103(1–2):88–97

    Article  PubMed  Google Scholar 

  • Fox PT, Raichle ME (1985) Stimulus rate determines regional brain blood flow in striate cortex. Ann Neurol 17(3):303–305

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Battaglini PP, Fattori P (1991) Functional properties of neurons in the anterior bank of the parieto-occipital sulcus of the macaque monkey. Eur J Neurosci 3(5):452–461

    Article  PubMed  Google Scholar 

  • Galletti C, Fattori P, Battaglini PP, Shipp S, Zeki S (1996) Functional demarcation of a border between areas V6 and V6A in the superior parietal gyrus of the macaque monkey. Eur J Neurosci 8(1):30–52

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Fattori P, Gamberini M, Kutz DF (1999a) The cortical visual area V6: brain location and visual topography. Eur J Neurosci 11(11):3922–3936

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Fattori P, Kutz DF, Gamberini M (1999b) Brain location and visual topography of cortical area V6A in the macaque monkey. Eur J Neurosci 11(2):575–582

    Article  CAS  PubMed  Google Scholar 

  • Galletti C, Gamberini M, Kutz DF, Fattori P, Luppino G, Matelli M (2001) The cortical connections of area V6: an occipito-parietal network processing visual information. Eur J Neurosci 13(8):1572–1588

    Article  CAS  PubMed  Google Scholar 

  • Goebel R, Khorram-Sefat D, Muckli L, Hacker H, Singer W (1998) The constructive nature of vision: direct evidence from functional magnetic resonance imaging studies of apparent motion and motion imagery. Eur J Neurosci 10(5):1563–1573

    Article  CAS  PubMed  Google Scholar 

  • Grefkes C, Fink GR (2005) The functional organization of the intraparietal sulcus in humans and monkeys. J Anat 207(1):3–17

    Article  PubMed  Google Scholar 

  • Haarmeier T, Kammer T (2010) Effect of TMS on oculomotor behavior but not perceptual stability during smooth pursuit eye movements. Cereb Cortex 20(9):2234–2243

    Article  PubMed  Google Scholar 

  • Haarmeier T, Thier P (1998) An electrophysiological correlate of visual motion awareness in man. J Cogn Neurosci 10(4):464–471

    Article  CAS  PubMed  Google Scholar 

  • Hagler DJ Jr, Riecke L, Sereno MI (2007) Parietal and superior frontal visuospatial maps activated by pointing and saccades. Neuroimage 35(4):1562–1577

    Article  PubMed  Google Scholar 

  • Handel B, Lutzenberger W, Thier P, Haarmeier T (2008) Selective attention increases the dependency of cortical responses on visual motion coherence in man. Cereb Cortex 18(12):2902–2908

    Article  PubMed  Google Scholar 

  • Heide W, Kompf D (1998) Combined deficits of saccades and visuo-spatial orientation after cortical lesions. Exp Brain Res 123(1–2):164–171

    Article  CAS  PubMed  Google Scholar 

  • Huk AC, Dougherty RF, Heeger DJ (2002) Retinotopy and functional subdivision of human areas MT and MST. J Neurosci 22(16):7195–7205

    CAS  PubMed  Google Scholar 

  • Jack AI, Patel GH, Astafiev SV, Snyder AZ, Akbudak E, Shulman GL, Corbetta M (2007) Changing human visual field organization from early visual to extra-occipital cortex. PLoS ONE 2(5):e452

    Article  PubMed  Google Scholar 

  • Kaido T, Hoshida T, Taoka T, Sakaki T (2004) Retinotopy with coordinates of lateral occipital cortex in humans. J Neurosurg 101(1):114–118

    Article  PubMed  Google Scholar 

  • Kolster H, Peeters R, Orban GA (2010) The retinotopic organization of the human middle temporal area MT/V5 and its cortical neighbors. J Neurosci 30(29):9801–9820

    Article  CAS  PubMed  Google Scholar 

  • Konen CS, Kastner S (2008) Representation of eye movements and stimulus motion in topographically organized areas of human posterior parietal cortex. J Neurosci 28(33):8361–8375

    Article  CAS  PubMed  Google Scholar 

  • Kovacs G, Cziraki C, Vidnyanszky Z, Schweinberger SR, Greenlee MW (2008a) Position-specific and position-invariant face aftereffects reflect the adaptation of different cortical areas. Neuroimage 43(1):156–164

    Article  PubMed  Google Scholar 

  • Kovacs G, Raabe M, Greenlee MW (2008b) Neural correlates of visually induced self-motion illusion in depth. Cereb Cortex 18(8):1779–1787

    Article  PubMed  Google Scholar 

  • Larsson J, Heeger DJ (2006) Two retinotopic visual areas in human lateral occipital cortex. J Neurosci 26(51):13128–13142

    Article  CAS  PubMed  Google Scholar 

  • Larsson J, Landy MS, Heeger DJ (2006) Orientation-selective adaptation to first- and second-order patterns in human visual cortex. J Neurophysiol 95(2): 862–881

    Article  PubMed  Google Scholar 

  • Maunsell JH, van Essen DC (1983) The connections of the middle temporal visual area (MT) and their relationship to a cortical hierarchy in the macaque monkey. J Neurosci 3(12):2563–2586

    CAS  PubMed  Google Scholar 

  • McKeefry DJ, Watson JD, Frackowiak RS, Fong K, Zeki S (1997) The activity in human areas V1/V2, V3, and V5 during the perception of coherent and incoherent motion. Neuroimage 5(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Nakamura H, Kuroda T, Wakita M, Kusunoki M, Kato A, Mikami A, Sakata H, Itoh K (2001) From three-dimensional space vision to prehensile hand movements: the lateral intraparietal area links the area V3A and the anterior intraparietal area in macaques. J Neurosci 21(20):8174–8187

    CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9(1):97–113

    Article  CAS  PubMed  Google Scholar 

  • Orban GA, Van Essen D, Vanduffel W (2004) Comparative mapping of higher visual areas in monkeys and humans. Trends Cogn Sci 8(7):315–324

    Article  PubMed  Google Scholar 

  • Orban GA, Claeys K, Nelissen K, Smans R, Sunaert S, Todd JT, Wardak C, Durand JB, Vanduffel W (2006) Mapping the parietal cortex of human and non-human primates. Neuropsychologia 44(13):2647–2667

    Article  PubMed  Google Scholar 

  • Pitzalis S, Galletti C, Huang RS, Patria F, Committeri G, Galati G, Fattori P, Sereno MI (2006) Wide-field retinotopy defines human cortical visual area v6. J Neurosci 26(30):7962–7973

    Article  CAS  PubMed  Google Scholar 

  • Pitzalis S, Sereno MI, Committeri G, Fattori P, Galati G, Patria F, Galletti C (2010) Human v6: the medial motion area. Cereb Cortex 20(2):411–424

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Petersen SE (1990) The attention system of the human brain. Annu Rev Neurosci 13:25–42

    Article  CAS  PubMed  Google Scholar 

  • Press WA, Brewer AA, Dougherty RF, Wade AR, Wandell BA (2001) Visual areas and spatial summation in human visual cortex. Vis Res 41(10–11):1321–1332

    Article  CAS  PubMed  Google Scholar 

  • Rees G, Friston K, Koch C (2000) A direct quantitative relationship between the functional properties of human and macaque V5. Nat Neurosci 3(7):716–723

    Article  CAS  PubMed  Google Scholar 

  • Schaafsma SJ, Duysens J, Gielen CC (1997) Responses in ventral intraparietal area of awake macaque monkey to optic flow patterns corresponding to rotation of planes in depth can be explained by translation and expansion effects. Vis Neurosci 14(4):633–646

    Article  CAS  PubMed  Google Scholar 

  • Schlack A, Hoffmann KP, Bremmer F (2003) Selectivity of macaque ventral intraparietal area (area VIP) for smooth pursuit eye movements. J Physiol 551(Pt 2):551–561

    Article  CAS  PubMed  Google Scholar 

  • Schluppeck D, Glimcher P, Heeger DJ (2005) Topographic organization for delayed saccades in human posterior parietal cortex. J Neurophysiol 94(2):1372–1384

    Article  PubMed  Google Scholar 

  • Schluppeck D, Curtis CE, Glimcher PW, Heeger DJ (2006) Sustained activity in topographic areas of human posterior parietal cortex during memory-guided saccades. J Neurosci 26(19):5098–5108

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9(10):1337–1343

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Tootell RB (2005) From monkeys to humans: what do we now know about brain homologies? Curr Opin Neurobiol 15(2):135–144

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Dale AM, Reppas JB, Kwong KK, Belliveau JW, Brady TJ, Rosen BR, Tootell RB (1995) Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. Science 268(5212):889–893

    Article  CAS  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294(5545):1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Sheremata SL, Bettencourt KC, Somers DC (2010) Hemispheric asymmetry in visuotopic posterior parietal cortex emerges with visual short-term memory load. J Neurosci 30(38):12581–12588

    Article  CAS  PubMed  Google Scholar 

  • Silver MA, Kastner S (2009) Topographic maps in human frontal and parietal cortex. Trends Cogn Sci 13(11):488–495

    Article  PubMed  Google Scholar 

  • Silver MA, Ress D, Heeger DJ (2005) Topographic maps of visual spatial attention in human parietal cortex. J Neurophysiol 94(2):1358–1371

    Article  PubMed  Google Scholar 

  • Smith AT, Greenlee MW, Singh KD, Kraemer FM, Hennig J (1998) The processing of first- and second-order motion in human visual cortex assessed by functional magnetic resonance imaging (fMRI). J Neurosci 18(10):3816–3830

    CAS  PubMed  Google Scholar 

  • Smith AT, Wall MB, Williams AL, Singh KD (2006) Sensitivity to optic flow in human cortical areas MT and MST. Eur J Neurosci 23(2):561–569

    Article  CAS  PubMed  Google Scholar 

  • Stenbacka L, Vanni S (2007) fMRI of peripheral visual field representation. Clin Neurophysiol 118(6):1303–1314

    Article  PubMed  Google Scholar 

  • Stiers P, Peeters R, Lagae L, Van Hecke P, Sunaert S (2006) Mapping multiple visual areas in the human brain with a short fMRI sequence. Neuroimage 29(1):74–89

    Article  PubMed  Google Scholar 

  • Sunaert S, Van Hecke P, Marchal G, Orban GA (1999) Motion-responsive regions of the human brain. Exp Brain Res 127(4):355–370

    Article  CAS  PubMed  Google Scholar 

  • Swisher JD, Halko MA, Merabet LB, McMains SA, Somers DC (2007) Visual topography of human intraparietal sulcus. J Neurosci 27(20):5326–5337

    Article  CAS  PubMed  Google Scholar 

  • Talairach J, Tournoux P (1988) Co-planar stereotaxic atlas of the human brain. 3-Dimensional proportional system: an approach to cerebral imaging. Thieme, New York, NY, USA

  • Tikhonov A, Haarmeier T, Thier P, Braun C, Lutzenberger W (2004) Neuromagnetic activity in medial parietooccipital cortex reflects the perception of visual motion during eye movements. Neuroimage 21(2):593–600

    Article  PubMed  Google Scholar 

  • Tootell RB, Reppas JB, Dale AM, Look RB, Sereno MI, Malach R, Brady TJ, Rosen BR (1995) Visual motion aftereffect in human cortical area MT revealed by functional magnetic resonance imaging. Nature 375(6527):139–141

    Article  CAS  PubMed  Google Scholar 

  • Tootell RB, Mendola JD, Hadjikhani NK, Ledden PJ, Liu AK, Reppas JB, Sereno MI, Dale AM (1997) Functional analysis of V3A and related areas in human visual cortex. J Neurosci 17(18):7060–7078

    CAS  PubMed  Google Scholar 

  • Tootell RB, Mendola JD, Hadjikhani NK, Liu AK, Dale AM (1998) The representation of the ipsilateral visual field in human cerebral cortex. Proc Natl Acad Sci USA 95(3):818–824

    Article  CAS  PubMed  Google Scholar 

  • Van Oostende S, Sunaert S, Van Hecke P, Marchal G, Orban GA (1997) The kinetic occipital (KO) region in man: an fMRI study. Cereb Cortex 7(7):690–701

    Article  CAS  PubMed  Google Scholar 

  • Vanduffel W, Fize D, Mandeville JB, Nelissen K, Van Hecke P, Rosen BR, Tootell RB, Orban GA (2001) Visual motion processing investigated using contrast agent-enhanced fMRI in awake behaving monkeys. Neuron 32(4):565–577

    Article  CAS  PubMed  Google Scholar 

  • von Pfostl V, Stenbacka L, Vanni S, Parkkonen L, Galletti C, Fattori P (2009) Motion sensitivity of human V6: a magnetoencephalography study. Neuroimage 45(4):1253–1263

    Article  Google Scholar 

  • Wade AR, Brewer AA, Rieger JW, Wandell BA (2002) Functional measurements of human ventral occipital cortex: retinotopy and colour. Philos Trans R Soc Lond B Biol Sci 357(1424):963–973

    Article  PubMed  Google Scholar 

  • Wall MB, Lingnau A, Ashida H, Smith AT (2008) Selective visual responses to expansion and rotation in the human MT complex revealed by functional magnetic resonance imaging adaptation. Eur J Neurosci 27(10):2747–2757

    Article  PubMed  Google Scholar 

  • Wandell BA, Dumoulin SO, Brewer AA (2007) Visual field maps in human cortex. Neuron 56(2):366–383

    Article  CAS  PubMed  Google Scholar 

  • Zhang T, Britten KH (2004) Clustering of selectivity for optic flow in the ventral intraparietal area. NeuroReport 15(12):1941–1945

    Article  PubMed  Google Scholar 

  • Zhang T, Heuer HW, Britten KH (2004) Parietal area VIP neuronal responses to heading stimuli are encoded in head-centered coordinates. Neuron 42(6):993–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Rüdiger Berndt and especially Dr. Friedemann Bunjes for their technical assistance. We thank M.B. Wall for his initial remarks on the retinotopic mapping analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Haarmeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Helfrich, R.F., Becker, H.G. & Haarmeier, T. Processing of Coherent Visual Motion in Topographically Organized Visual Areas in Human Cerebral Cortex. Brain Topogr 26, 247–263 (2013). https://doi.org/10.1007/s10548-012-0226-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-012-0226-1

Keywords

Navigation