Skip to main content
Log in

A Pool of Pairs of Related Objects (POPORO) for Investigating Visual Semantic Integration: Behavioral and Electrophysiological Validation

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

Semantic processing of verbal and visual stimuli has been investigated in semantic violation or semantic priming paradigms in which a stimulus is either related or unrelated to a previously established semantic context. A hallmark of semantic priming is the N400 event-related potential (ERP)—a deflection of the ERP that is more negative for semantically unrelated target stimuli. The majority of studies investigating the N400 and semantic integration have used verbal material (words or sentences), and standardized stimulus sets with norms for semantic relatedness have been published for verbal but not for visual material. However, semantic processing of visual objects (as opposed to words) is an important issue in research on visual cognition. In this study, we present a set of 800 pairs of semantically related and unrelated visual objects. The images were rated for semantic relatedness by a sample of 132 participants. Furthermore, we analyzed low-level image properties and matched the two semantic categories according to these features. An ERP study confirmed the suitability of this image set for evoking a robust N400 effect of semantic integration. Additionally, using a general linear modeling approach of single-trial data, we also demonstrate that low-level visual image properties and semantic relatedness are in fact only minimally overlapping. The image set is available for download from the authors’ website. We expect that the image set will facilitate studies investigating mechanisms of semantic and contextual processing of visual stimuli.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Auckland ME, Cave KR, Donnelly N (2007) Nontarget objects can influence perceptual processes during object recognition. Psychon Bull Rev 14(2):332–337

    Article  PubMed  Google Scholar 

  • Bar M (2004) Visual objects in context. Nat Rev Neurosci 5(8):617–629

    Article  PubMed  CAS  Google Scholar 

  • Bar M, Aminoff E (2003) Cortical analysis of visual context. Neuron 38(2):347–358

    Article  PubMed  CAS  Google Scholar 

  • Barrett SE, Rugg MD (1990) Event-related potentials and the semantic matching of pictures. Brain Cogn 14(2):201–212

    Article  PubMed  CAS  Google Scholar 

  • Berkum JJAV, Brown CM, Zwitserlood P, Kooijman V, Hagoort P (2005) Anticipating upcoming words in discourse: evidence from ERPs and reading times. J Exp Psychol Learn Mem Cogn 31(3):443–467

    Article  PubMed  Google Scholar 

  • Biederman I, Mezzanotte RJ, Rabinowitz JC (1982) Scene perception: detecting and judging objects undergoing relational violations. Cogn Psychol 14(2):143–177

    Article  PubMed  CAS  Google Scholar 

  • Block CK, Baldwin CL (2010) Cloze probability and completion norms for 498 sentences: behavioral and neural validation using event-related potentials. Behav Res Methods 42(3):665–670

    Article  PubMed  Google Scholar 

  • Bloom PA, Fischler I (1980) Completion norms for 329 sentence contexts. Mem Cogn 8(6):631–642

    Article  CAS  Google Scholar 

  • Busch NA, Debener S, Kranczioch C, Engel AK, Herrmann CS (2004) Size matters: effects of stimulus size, duration and eccentricity on the visual gamma-band response. Clin Neurophysiol 115(8):1810–1820

    Article  PubMed  Google Scholar 

  • Busch NA, Herrmann CS, Müller MM, Lenz D, Gruber T (2006) A cross-laboratory study of event-related gamma activity in a standard object recognition paradigm. Neuroimage 33(4):1169–1177

    Article  PubMed  Google Scholar 

  • Celesia G (1993) Visual evoked potentials and electroretinograms. In: Niedermeyer E, Lopes Da Silva F (eds) Electroencephalography: basic principles, clinical applications and related fields. Williams and Wilkins, Baltimore, pp 911–936

  • Davenport JL, Potter MC (2004) Scene consistency in object and background perception. Psychol Sci 15(8):559–564

    Article  PubMed  Google Scholar 

  • Federmeier KD (2007) Thinking ahead: the role and roots of prediction in language comprehension. Psychophysiology 44(4):491–505

    Article  PubMed  Google Scholar 

  • Federmeier KD, Kutas M (2002) Picture the difference: electrophysiological investigations of picture processing in the two cerebral hemispheres. Neuropsychologia 40(7):730–747

    Article  PubMed  Google Scholar 

  • Field A (2009) Discovering statistics Using SPSS (introducing statistical methods series). Sage, Beverly Hills

    Google Scholar 

  • Fründ I, Busch NA, Körner U, Schadow J, Herrmann CS (2007) EEG oscillations in the gamma and alpha range respond differently to spatial frequency. Vision Res 47(15):2086–2098

    Article  PubMed  Google Scholar 

  • Ganis G, Kutas M (2003) An electrophysiological study of scene effects on object identification. Brain Res Cogn Brain Res 16(2):123–144

    Article  PubMed  Google Scholar 

  • Ganis G, Kutas M, Sereno M (1996) The search for “common sense”: an electrophysiological study of the comprehension of words and pictures in reading. J Cogn Neurosci 8(2):89–106

    Article  Google Scholar 

  • Gaspar CM, Rousselet GA, Pernet CR (2011) Reliability of ERP and single-trial analyses. Neuroimage 58(2):620–629

    Article  PubMed  Google Scholar 

  • Grill-Spector K, Henson R, Martin A (2006) Repetition and the brain: neural models of stimulus-specific effects. Trends Cogn Sci 10(1):14–23

    Article  PubMed  Google Scholar 

  • Hamm JP, Johnson BW, Kirk IJ (2002) Comparison of the N300 and N400 ERPs to picture stimuli in congruent and incongruent contexts. Clin Neurophysiol 113(8):1339–1350

    Article  PubMed  Google Scholar 

  • Hauk O, Davis MH, Ford M, Pulvermüller F, Marslen-Wilson WD (2006) The time course of visual word recognition as revealed by linear regression analysis of ERP data. Neuroimage 30(4):1383–1400

    Article  PubMed  CAS  Google Scholar 

  • Holcomb PJ, McPherson WB (1994) Event-related brain potentials reflect semantic priming in an object decision task. Brain Cogn 24(2):259–276

    Article  PubMed  CAS  Google Scholar 

  • Hollingworth A, Henderson JM (1999) Object identification is isolated from scene semantic constraint: evidence from object type and token discrimination. Acta Psychol (Amst) 102(2–3):319–343

    Article  CAS  Google Scholar 

  • Kiebel SJ, Friston KJ (2004) Statistical parametric mapping for event-related potentials: I. Generic considerations. Neuroimage 22(2):492–502

    Article  PubMed  Google Scholar 

  • Kiefer M, Brendel D (2006) Attentional modulation of unconscious “automatic” processes: evidence from event-related potentials in a masked priming paradigm. J Cogn Neurosci 18(2):184–198

    Article  PubMed  Google Scholar 

  • Knebel J, Toepel U, Hudry J, le Coutre J, Murray MM (2008) Generating controlled image sets in cognitive neuroscience research. Brain Topogr 20(4):284–289

    Article  PubMed  Google Scholar 

  • Kouider S, Dehaene S (2007) Levels of processing during non-conscious perception: a critical review of visual masking. Philos Trans R Soc Lond B Biol Sci 362(1481):857–875

    Article  PubMed  Google Scholar 

  • Kutas M, Federmeier KD (2000) Electrophysiology reveals semantic memory use in language comprehension. Trends Cogn Sci 4(12):463–470

    Google Scholar 

  • Kutas M, Federmeier KD (2011) Thirty years and counting: finding meaning in the N400 component of the event-related brain potential (ERP). Annu Rev Psychol 62:621–647

    Article  PubMed  Google Scholar 

  • Kutas M, Hillyard SA (1980) Reading senseless sentences: brain potentials reflect semantic incongruity. Science 207(4427):203–205

    Article  PubMed  CAS  Google Scholar 

  • Kutas M, Hillyard SA (1984) Brain potentials during reading reflect word expectancy and semantic association. Nature 307(5947):161–163

    Article  PubMed  CAS  Google Scholar 

  • Lau EF, Phillips C, Poeppel D (2008) A cortical network for semantics: (de)constructing the N400. Nat Rev Neurosci 9(12):920–933

    Article  PubMed  CAS  Google Scholar 

  • Ling H, Jacobs DW (2007) Shape classification using the inner-distance. IEEE Trans Pattern Anal Mach Intell 29(2):286–299

    Article  PubMed  Google Scholar 

  • Maris E, Oostenveld R (2007) Nonparametric statistical testing of EEG- and MEG-data. J Neurosci Methods 164(1):177–190

    Article  PubMed  Google Scholar 

  • McPherson WB, Holcomb PJ (1999) An electrophysiological investigation of semantic priming with pictures of real objects. Psychophysiology 36(1):53–65

    Article  PubMed  CAS  Google Scholar 

  • Mudrik L, Lamy D, Deouell LY (2010) ERP evidence for context congruity effects during simultaneous object-scene processing. Neuropsychologia 48(2):507–517

    Article  PubMed  Google Scholar 

  • Nigam A, Hoffman J, Simons R (1992) N400 to semantically anomalous pictures and words. J Cogn Neurosci 4(1):15–22

    Article  Google Scholar 

  • Nolan H, Whelan R, Reilly RB (2010) Faster: fully automated statistical thresholding for EEG artifact rejection. J Neurosci Methods 192(1):152–162

    Article  PubMed  CAS  Google Scholar 

  • Oliva A, Torralba A (2007) The role of context in object recognition. Trends Cogn Sci 11(12):520–527

    Article  PubMed  Google Scholar 

  • Pernet CR, Chauveau N, Gaspar C, Rousselet GA (2011) LIMO EEG: a toolbox for hierarchical LInear MOdeling of ElectroEncephaloGraphic data. Comput Intell Neurosci 2011:831,409

    Google Scholar 

  • Poynton C (2003) Digital video and HDTV: algorithms and interfaces. Morgan Kaufmann, San Francisco

  • Reiss JE, Hoffman JE (2006) Object substitution masking interferes with semantic processing: evidence from event-related potentials. Psychol Sci 17(12):1015–1020

    Article  PubMed  Google Scholar 

  • Rousselet GA, Pernet CR, Bennett PJ, Sekuler AB (2008) Parametric study of EEG sensitivity to phase noise during face processing. BMC Neurosci 9:98

    Article  PubMed  Google Scholar 

  • Schadow J, Lenz D, Thaerig S, Busch NA, Fründ I, Rieger JW, Herrmann CS (2007) Stimulus intensity affects early sensory processing: visual contrast modulates evoked gamma-band activity in human EEG. Int J Psychophysiol 66(1):28–36

    Article  PubMed  Google Scholar 

  • Schwanenflugel P, LaCount K (1988) Semantic relatedness and the scope of facilitation for upcoming words in sentences. J Exp Psychol Learn Mem Cogn 14(2):344

    Article  Google Scholar 

  • Sitnikova T, Holcomb PJ, Kiyonaga KA, Kuperberg GR (2008) Two neurocognitive mechanisms of semantic integration during the comprehension of visual real-world events. J Cogn Neurosci 20(11):2037–2057

    Article  PubMed  Google Scholar 

  • Stenberg G, Lindgren M, Johansson M, Olsson A, Rosén I (2000) Semantic processing without conscious identification: evidence from event-related potentials. J Exp Psychol Learn Mem Cogn 26(4):973–1004

    Article  PubMed  CAS  Google Scholar 

  • Vogel EK, Luck SJ, Shapiro KL (1998) Electrophysiological evidence for a postperceptual locus of suppression during the attentional blink. J Exp Psychol Hum Percept Perform 24(6):1656–1674

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgment

This study was supported by the German Research Foundation (DFG; grant BU 2400/1-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niko A. Busch.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material PDF (1545 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kovalenko, L.Y., Chaumon, M. & Busch, N.A. A Pool of Pairs of Related Objects (POPORO) for Investigating Visual Semantic Integration: Behavioral and Electrophysiological Validation. Brain Topogr 25, 272–284 (2012). https://doi.org/10.1007/s10548-011-0216-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-011-0216-8

Keywords

Navigation