Skip to main content

Advertisement

Log in

Cortical Potential Imaging of Somatosensory Evoked Potentials by Means of the Boundary Element Method in Pediatric Epilepsy Patients

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

Abstract

The aim of the present study was to assess the feasibility of identifying the primary hand sensory area and central sulcus in pediatric patients using the cortical potential imaging (CPI) method from the scalp recorded somatosensory evoked potentials (SEPs). The CPI method was used to reconstruct the cortical potential distribution from the scalp potentials with the boundary element (3-layer: scalp, skull and brain) head model based on MR images of individual subjects. The cortical potentials estimated from the pre-operative scalp SEPs of four pediatric patients, were compared with the post-op subdural SEP recordings made in the same subjects. Estimated and directly recorded cortical SEP maps showed comparable spatial patterns on the cortical surface in four patients (spatial correlation coefficient >0.7 in the SEP spikes). For two of four patients, the estimated waveforms correlated significantly to the waveforms obtained by direct cortical recordings. The present results demonstrated the feasibility of the cortical potential imaging approach in noninvasive imaging spatial distribution and temporal waveforms of cortical potentials for pediatric patients. These also suggest that the CPI method may provide a promising means of estimating the cortical potential and noninvasive localizing the central sulcus to aid surgical planning for pediatric patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Babiloni F, Babiloni C, Carducci F, Fattorini L, Anello C, Onorati P (1997) High resolution EEG: a new model-dependent spatial deblurring method using a realistically-shaped MR-constructed subject’s head model. Electroenceph clin Neurophysiol 102:69–80

    Article  CAS  PubMed  Google Scholar 

  • Bai X, Towle VL, He EJ, He B (2007) Evaluation of cortical current density imaging methods using intracranial electrocorticograms and functional MRI. NeuroImage 35:598–608

    Article  PubMed  Google Scholar 

  • Barba C, Valeriani M, Colicchio G, Tonali P, Restuccia D (2004) Parietal generators of low-high-frequency MN (median nerve) SEPs: data from intracortical human recordings. Clin Neurophysiol 115:647–657

    Article  CAS  PubMed  Google Scholar 

  • Debatisse D, Pralong E, Dehdashti AR, Regli L (2005) Simultaneous multilobar eletrocorticography (mEcoG) and scalp electroencephalography (scalp EEG) during intracranial vascular surgery: a new approach in neuromonitoring. Clin Neurophysiol 116:2734–2740

    Article  PubMed  Google Scholar 

  • Ding L, He B (2008) Sparse source imaging in electroencephalography with accurate field modeling. Hum Brain Mapp 29:1053–1067

    Article  PubMed  Google Scholar 

  • Ding L, Worrell GA, Lagerlund TD, He B (2007) Ictal source analysis: localization and imaging of causal interactions in humans. NeuroImage 34:575–586

    Article  PubMed  Google Scholar 

  • Engel J, Rausch JR, Lieb JP, Kuhl DE, Crandall PH (1981) Correlation of criteria used for localizing epileptic foci in patient considered for surgical therapy of epilepsy. Ann Neurol 9:215–224

    Article  PubMed  Google Scholar 

  • Fifer WP, Grieve PG, Grose-fifer J, Isler JR, Byrd D (2006) High-density electroencephalogram monitoring in the neonate. Clin Perinatol 33:679–691

    Article  PubMed  Google Scholar 

  • Fuchs M, Wagner M, Kastner J (2001) Boundary element method volume conductor models for EEG source reconstruction. Clin Neurophysiol 112:1400–1407

    Article  CAS  PubMed  Google Scholar 

  • Gevins A, Le J, Martin NK, Brickett P, Desmond J, Reutter B (1994) High resolution EEG: 124-channel recording, spatial deblurring and MRI integration method. Electroenceph clin Neurophysiol 90:337–358

    Article  CAS  PubMed  Google Scholar 

  • Graimann B, Huggins JE, Levine SP, Pfurtscheller G (2002) Visualization of significant ERD/ERS patterns in multichannel EEG and ECoG data. Clin Neurophysiol 113:43–47

    Article  CAS  PubMed  Google Scholar 

  • Hansen PC (1990) Truncated singular value decomposition solutions to discrete ill posed problems with ill determined numerical rank. SIAM J Sci Stat Comput 11:503–518

    Article  Google Scholar 

  • Hansen PC (1994) Regularization tools: a Matlab package for analysis and solution of discrete ill-posed problems. Numer Algorithms 6:1–35

    Article  Google Scholar 

  • Hansson T, Brismar T (2003) Loss of sensory discrimination after median nerve injury and activation in the primary somatosensory cortex on functional magnetic resonance imaging. J Neurosurg 99:100–105

    Article  PubMed  Google Scholar 

  • He B, Lian J (2005) Electrophysiological neuroimaging: solving the EEG inverse problem. In: He B (ed) Neuroal engineering. Kluwer Academic Publishers, Norwell, pp 221–261

    Chapter  Google Scholar 

  • He B, Musha T, Okamoto Y, Homma S, Nakajima Y, Sato T (1987) Electric dipole tracing in the brain by means of the boundary element method and its accuracy. IEEE Trans Biomed Eng BME-34:406–414

    Article  Google Scholar 

  • He B, Wang Y, Pak S, Ling Y (1996) Cortical source imaging from scalp electroencephalograms. Med Biol Eng Comput 34:257–258

    Article  Google Scholar 

  • He B, Wang Y, Wu D (1999) Estimating cortical potentials from scalp EEG’s in a realistically shaped inhomogeneous head model. IEEE Trans Biomed Eng 46:1264–1268

    Article  CAS  PubMed  Google Scholar 

  • He B, Lian J, Spencer KM, Dien J, Donchin E (2001) A cortical potential imaging analysis of the P300 and novelty P3 components. Hum Brain Mapp 12:120–130

    Article  CAS  PubMed  Google Scholar 

  • He B, Zhang X, Lian J, Sasaki H, Wu D, Towle VL (2002) Boundary element method-based cortical potential imaging of somatosensory evoked potentials using subjects’s magnetic resonance images. NeuroImage 16:564–576

    Article  CAS  PubMed  Google Scholar 

  • Huppertz HJ, Hof E, Klisch J, Wagner M, Lücking CH, Kristeva-Feige R (2001) Localization of interictal delta and epileptiform EEG activity associated with focal epileptogenic brain lesions. Neuroimage 13:15–28

    Article  CAS  PubMed  Google Scholar 

  • Kaňovský P, Bareš M, Rektor I (2003) The selective gating the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings. Clin Neurophysiol 114:981–991

    Article  PubMed  Google Scholar 

  • Karatas A, Erdem A, Savas A, Kutlu G, Yağmurlu B, Erden İ, Bilir E (2004) Identification and removal of an epileptogenic lesion using Ictal-EEG, functional-neuronavigation and electrocorticography. J Clin Neurosci 11:343–346

    Article  PubMed  Google Scholar 

  • Kinoshita M, Ikeda A, Matsuhashi M, Matsumoto R, Hitomi T, Begum T, Usui K, Takayama M, Mikuni N, Miyamoto S, Hashimoto N, Shibasaki H (2005) Electric cortical stimulation suppresses epileptic and background activities in neocortical epilepsy and mesial temporal lobe epilepsy. Clin Neurophysiol 116:1291–1299

    Article  PubMed  Google Scholar 

  • Kumabe T, Nakasato N, Nagmastu K, Tominaga T (2005) Intraoperative localization of lip sensory area by somatosensory evoked potentials. J Clin Neurosci 12:66–70

    Article  CAS  PubMed  Google Scholar 

  • Lai Y, Van Drongelen W, Ding L, Hecox KE, Towle VL, Frim DM, He B (2005) Estimation of in vivo human brain-to-skull conductivity ratio from simultaneous extra- and intra-cranial electrical potential recordings. Clin Neurophysiol 116:456–465

    Article  CAS  PubMed  Google Scholar 

  • Michel CM, Murray MM, Lantz G, Gonzalez S, Spinelli L (2004) Grave de Peralta R EEG source imaging. Clin Neurophysiol 115:2195–2222

    Article  PubMed  Google Scholar 

  • Modayur B, Prothero J, Ojemann G, Maravilla K, Brinkley J (1997) Visualization-based mapping of language function in the brain. Neuroimage 6:245–258

    Article  CAS  PubMed  Google Scholar 

  • NeuroScan L (2004) Curry 5.0TM user guide. pp 144–154

  • Nunez PL, Srinivasan R (2005) Electric fields of the brain: the neurophysics of EEG, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Nunez P, Silibertein RB, Cdush PJ, Wijesinghe RS, Westdrop AF, Srinivasan R (1994) A theoretical and experimental study of high resolution EEG based on surface Laplacian and cortical imaging. Electroenceph Clin Neurophysiol 90:40–57

    Article  CAS  PubMed  Google Scholar 

  • Ochi A, Otsubo H, Shirasawa A, Hunjan A, Sharma R, Bettings M, Rutka JT, Kamijo K, Yamazaki T, Wilson SB, Snead OC III (2000) Systematic approach to dipole localization of interictal EEG spikes in children with extratemporal lobe epilepsies. Clin Neurophysiol 111:161–168

    Article  CAS  PubMed  Google Scholar 

  • Oostendorp TF, Delbeke J, Stegeman DF (2000) The conductivity of the human skull: results of in vivo and in vitro measurements. IEEE Trans Biomed Eng 47:1487–1492

    Article  CAS  PubMed  Google Scholar 

  • Ou W, Hämäläinen MS, Golland P (2009) A distributed spatio-temporal EEG/MEG inverse solver. NeuroImage 44:932–946

    Article  PubMed  Google Scholar 

  • Plummer C, Harvey AS, Cook M (2008) EEG source localization in focal epilepsy: where are we now? Epilepsia 49:201–218

    Article  PubMed  Google Scholar 

  • Sidman R, Ford M, Ramsey G, Schlichting C (1990) Age-related features of the resting and P300 auditory evoked responses using the dipole localization method and cortical imaging technique. J Neurosci Methods 33:23–32

    Article  CAS  PubMed  Google Scholar 

  • Srebro R, Oguz RM, Hughlett K, Purdy PD (1993) Estimating regional brain activity from evoked potential field on the scalp. IEEE Trans Biomed Eng 40:509–516

    Article  CAS  PubMed  Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solution of ill-posed problems. Wiley, New York

    Google Scholar 

  • Towle VL, Khorasani L, Uftring S, Pelizzari C, Erickson RK, Spire JP, Hoffmann K, Chu D, Scherg M (2003) Noninvasive identification of human central sulcus: a comparison of gyral morphology, functional MRI, dipole localization, and direct cortical mapping. NeuroImage 19:684–697

    Article  PubMed  Google Scholar 

  • Waberski TD, Gobbele R, Darvas F, Schmitz S, Buchner H (2002) Spatiotemporal imaging of electrical activity related to attention to somatosensory stimulation. NeuroImage 17:1347–1357

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, He B (1998) A computer simulation study of cortical imaging from scalp potentials. IEEE Trans Biomed Eng 45:724–735

    Article  CAS  PubMed  Google Scholar 

  • Yousry TA, Schmid UD, Alkadhi H, Schmidt D, Peraud A, Buettner A, Winkler P (1997) Localization of motor hand area to knob on the precentral gyrus: a new landwark. Brain 120:141–157

    Article  PubMed  Google Scholar 

  • Zhang X, Van Dongelen W, Hecox KE, Towle VL, Frim DM, McGee AB, He B (2003) High-resolution EEG: cortical potential imaging of interictal spikes. Clin Neurophysiol 114:1963–1973

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Ding L, van Drongelen W, Hecox K, Frim DM, He B (2006a) A cortical potential imaging study from simultaneous extra- and intracranial electrical recordings by means of the finite element method. NeuroImage 31:1513–1524

    Article  PubMed  Google Scholar 

  • Zhang Y, van Drongelen W, He B (2006b) Estimation of in vivo brain-to-skull conductivity ratio in humans. Appl Phys Lett 89:223903–2239033

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Drs. Kurt Hecox and David Frim for useful discussions on the data collection, Dr. Hal Blumenfeld for constructive comments to the manuscript, and Drs. Christopher Wilke, Yuan Lai and Zhongming Liu for useful discussions on the data analysis. This work was supported in part by NIH R01EB00178, NIH R01EB007920, and NIH R01EB006433.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin He.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bai, X., Towle, V.L., van Drongelen, W. et al. Cortical Potential Imaging of Somatosensory Evoked Potentials by Means of the Boundary Element Method in Pediatric Epilepsy Patients. Brain Topogr 23, 333–343 (2011). https://doi.org/10.1007/s10548-010-0155-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-010-0155-9

Keywords

Navigation