A Review of Combined TMS-EEG Studies to Characterize Lasting Effects of Repetitive TMS and Assess Their Usefulness in Cognitive and Clinical Neuroscience

Abstract

Transcranial magnetic stimulation (TMS) has developed into a powerful tool for studying human brain physiology and brain–behavior relations. When applied in sessions of repeated stimulation, TMS can lead to changes in neuronal activity/excitability that outlast the stimulation itself. Such aftereffects are at the heart of the offline TMS protocols in cognitive neuroscience and neurotherapeutics. However, whether these aftereffects are of applied interest critically depends on their magnitude and duration, which should fall within an experimentally or clinically useful range without increasing risks and adverse effects. In this short review, we survey combined TMS-EEG studies to characterize the TMS-aftereffects as revealed by EEG to contribute to the characterization of the most effective and promising repetitive TMS-parameters. With one session of conventional repetitive TMS (of fixed pulse frequency), aftereffects were consistently comparable in magnitude to EEG-changes reported after learning or with fatigue, and were short-lived (<70 min). The few studies using recently developed protocols (such as theta burst stimulation) suggest comparable effect-size but longer effect-durations. Based on the reviewed data, it is expected that TMS-efficacy can be further promoted by repeating TMS-sessions, by using EEG-gated TMS to tailor TMS to current neuronal state, or by other, non-conventional TMS-protocols. Newly emerging developments in offline TMS research for cognitive neuroscience and neurotherapeutics are outlined.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Bae EH, Schrader LM, Machii K, Alonso-Alonso M, Riviello JJ Jr, Pascual-Leone A, Rotenberg A (2007) Safety and tolerability of repetitive transcranial magnetic stimulation in patients with epilepsy: a review of the literature. Epilepsy Behav 10:521–528

    Article  PubMed  Google Scholar 

  2. Bohotin V, Fumal A, Vandenheede M, Gérard P, Bohotin C, Maertens de Noordhout A, Schoenen J (2002) Effects of repetitive transcranial magnetic stimulation on visual evoked potentials in migraine. Brain 125:912–922

    Article  CAS  PubMed  Google Scholar 

  3. Brignani D, Manganotti P, Rossini PM, Miniussi C (2008) Modulation of cortical oscillatory activity during transcranial magnetic stimulation. Hum Brain Mapp 29:603–612

    Article  PubMed  Google Scholar 

  4. Chen R, Gerloff C, Classen J, Wassermann EM, Hallett M, Cohen LG (1997) Safety of different inter-train intervals for repetitive transcranial magnetic stimulation and recommendations for safe ranges of stimulation parameters. Electroencephalogr Clin Neurophysiol 105:415–421

    Article  CAS  PubMed  Google Scholar 

  5. Chen WH, Mima T, Siebner HR, Oga T, Hara H, Satow T, Begum T, Nagamine T, Shibasaki H (2003) Low-frequency rTMS over lateral premotor cortex induces lasting changes in regional activation and functional coupling of cortical motor areas. Clin Neurophysiol 114:1628–1637

    Article  PubMed  Google Scholar 

  6. Classen J, Wolters A, Stefan K, Wycislo M, Sandbrink F, Schmidt A, Kunesch E (2004) Paired associative stimulation. Suppl Clin Neurophysiol 57:563–569

    Article  PubMed  Google Scholar 

  7. Cohrs S, Tergau F, Riech S, Kastner S, Paulus W, Ziemann U, Rüther E, Hajak G (1998) High-frequency repetitive transcranial magnetic stimulation delays rapid eye movement sleep. Neuroreport 9:3439–3443

    Article  CAS  PubMed  Google Scholar 

  8. Enomoto H, Ugawa Y, Hanajima R, Yuasa K, Mochizuki H, Terao Y, Shiio Y, Furubayashi T, Iwata NK, Kanazawa I (2001) Decreased sensory cortical excitability after 1 Hz rTMS over the ipsilateral primary motor cortex. Clin Neurophysiol 112:2154–2158

    Article  CAS  PubMed  Google Scholar 

  9. Erbil N, Ungan P (2007) Changes in the alpha and beta amplitudes of the central EEG during the onset, continuation, and offset of long-duration repetitive hand movements. Brain Res 1169:44–56

    Article  CAS  PubMed  Google Scholar 

  10. Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G (2006) A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull 69:86–94

    Article  CAS  PubMed  Google Scholar 

  11. Evers S, Böckermann I, Nyhuis PW (2001) The impact of transcranial magnetic stimulation on cognitive processing: an event-related potential study. Neuroreport 12:2915–2918

    Article  CAS  PubMed  Google Scholar 

  12. Fregni F, Pascual-Leone A (2007) Technology insight: noninvasive brain stimulation in neurology-perspectives on the therapeutic potential of rTMS and tDCS. Nat Clin Pract Neurol 3:383–393

    Article  PubMed  Google Scholar 

  13. Fregni F, Boggio PS, Valle AC, Otachi P, Thut G, Rigonatti SP, Marcolin MA, Fecteau S, Pascual-Leone A, Fiore L, Valente K (2006) Homeostatic effects of plasma valproate levels on corticospinal excitability changes induced by 1 Hz rTMS in patients with juvenile myoclonic epilepsy. Clin Neurophysiol 117:1217–1227

    Article  CAS  PubMed  Google Scholar 

  14. Fuggetta G, Pavone EF, Fiaschi A, Manganotti P (2008) Acute modulation of cortical oscillatory activities during short trains of high-frequency repetitive transcranial magnetic stimulation of the human motor cortex: a combined EEG and TMS study. Hum Brain Mapp 29:1–13

    Article  PubMed  Google Scholar 

  15. Fumal A, Bohotin V, Vandenheede M, Seidel L, de Pasqua V, de Noordhout AM, Schoenen J (2003) Effects of repetitive transcranial magnetic stimulation on visual evoked potentials: new insights in healthy subjects. Exp Brain Res 150:332–340

    PubMed  Google Scholar 

  16. Gerschlager W, Siebner HR, Rothwell JC (2001) Decreased corticospinal excitability after subthreshold 1 Hz rTMS over lateral premotor cortex. Neurology 57:449–455

    CAS  PubMed  Google Scholar 

  17. Graf T, Engeler J, Achermann P, Mosimann UP, Noss R, Fisch HU, Schlaepfer TE (2001) High frequency repetitive transcranial magnetic stimulation (rTMS) of the left dorsolateral cortex: EEG topography during waking and subsequent sleep. Psychiatry Res 107:1–9

    Article  CAS  PubMed  Google Scholar 

  18. Griskova I, Ruksenas O, Dapsys K, Herpertz S, Höppner J (2007) The effects of 10 Hz repetitive transcranial magnetic stimulation on resting EEG power spectrum in healthy subjects. Neurosci Lett 419:162–167

    Article  CAS  PubMed  Google Scholar 

  19. Grossheinrich N, Rau A, Pogarell O, Hennig-Fast K, Reinl M, Karch S, Dieler A, Leicht G, Mulert C, Sterr A, Padberg F (2009) Theta burst stimulation of the prefrontal cortex: safety and impact on cognition, mood, and resting electroencephalogram. Biol Psychiatry 65:778–784

    Article  PubMed  Google Scholar 

  20. Hallett M (2007) Transcranial magnetic stimulation: a primer. Neuron 55:187–199

    Article  CAS  PubMed  Google Scholar 

  21. Hamidi M, Slagter HA, Tononi G, Postle BR. Repetitive transcranial magnetic stimulation affects behavior by biasing endogenous cortical oscillations. Front Integr Neurosci (in press)

  22. Hansenne M, Laloyaux O, Mardaga S, Ansseau M (2004) Impact of low frequency transcranial magnetic stimulation on event-related brain potentials. Biol Psychol 67:331–341

    Google Scholar 

  23. Holler I, Siebner HR, Cunnington R, Gerschlager W (2006) 5 Hz repetitive TMS increases anticipatory motor activity in the human cortex. Neurosci Lett 392:221–225

    Article  CAS  PubMed  Google Scholar 

  24. Hosono Y, Urushihara R, Harada M, Morita N, Murase N, Kunikane Y, Shimazu H, Asanuma K, Uguisu H, Kaji R (2008) Comparison of monophasic versus biphasic stimulation in rTMS over premotor cortex: SEP and SPECT studies. Clin Neurophysiol 119:2538–2545

    Article  PubMed  Google Scholar 

  25. Huang YZ, Edwards MJ, Rounis E, Bhatia KP, Rothwell JC (2005) Theta burst stimulation of the human motor cortex. Neuron 45:201–206

    Article  CAS  PubMed  Google Scholar 

  26. Huber R, Esser SK, Ferrarelli F, Massimini M, Peterson MJ, Tononi G (2007) TMS-induced cortical potentiation during wakefulness locally increases slow wave activity during sleep. PLoS ONE 2:e276

    Article  PubMed  Google Scholar 

  27. Huber R, Määttä S, Esser SK, Sarasso S, Ferrarelli F, Watson A, Ferreri F, Peterson MJ, Tononi G (2008) Measures of cortical plasticity after transcranial paired associative stimulation predict changes in electroencephalogram slow-wave activity during subsequent sleep. J Neurosci 28:7911–7918

    Article  CAS  PubMed  Google Scholar 

  28. Ishikawa S, Matsunaga K, Nakanishi R, Kawahira K, Murayama N, Tsuji S, Huang YZ, Rothwell JC (2007) Effect of theta burst stimulation over the human sensorimotor cortex on motor and somatosensory evoked potentials. Clin Neurophysiol 118:1033–1043

    Article  PubMed  Google Scholar 

  29. Iyer MB, Schleper N, Wassermann EM (2003) Priming stimulation enhances the depressant effect of low-frequency repetitive transcranial magnetic stimulation. J Neurosci 23:10867–10872

    CAS  PubMed  Google Scholar 

  30. Jing H, Takigawa M (2000) Observation of EEG coherence after repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:1620–1631

    Article  CAS  PubMed  Google Scholar 

  31. Jing H, Takigawa M, Hamada K, Okamura H, Kawaika Y, Yonezawa T, Fukuzako H (2001a) Effects of high frequency repetitive transcranial magnetic stimulation on P(300) event-related potentials. Clin Neurophysiol 112:304–313

    Article  CAS  PubMed  Google Scholar 

  32. Jing H, Takigawa M, Okamura H, Doi W, Fukuzako H (2001b) Comparisons of event-related potentials after repetitive transcranial magnetic stimulation. J Neurol 248:184–192

    Article  CAS  PubMed  Google Scholar 

  33. Johnston J, Rearick M, Slobounov S (2001) Movement-related cortical potentials associated with progressive muscle fatigue in a grasping task. Clin Neurophysiol 112:68–77

    Article  CAS  PubMed  Google Scholar 

  34. Katayama T, Rothwell JC (2007) Modulation of somatosensory evoked potentials using transcranial magnetic intermittent theta burst stimulation. Clin Neurophysiol 118:2506–2511

    Article  PubMed  Google Scholar 

  35. Klimesch W, Sauseng P, Gerloff C (2003) Enhancing cognitive performance with repetitive transcranial magnetic stimulation at human individual alpha frequency. Eur J Neurosci 17:1129–1133

    Article  PubMed  Google Scholar 

  36. Kobayashi M, Pascual-Leone A (2003) Transcranial magnetic stimulation in neurology. Lancet Neurol 2:145–156

    Article  PubMed  Google Scholar 

  37. Komssi S, Kähkönen S (2006) The novelty value of the combined use of electroencephalography and transcranial magnetic stimulation for neuroscience research. Brain Res Rev 52:183–192

    Article  PubMed  Google Scholar 

  38. Lang N, Siebner HR, Ernst D, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning with transcranial direct current stimulation sensitizes the motor cortex to rapid-rate transcranial magnetic stimulation and controls the direction of after-effects. Biol Psychiatry 56:634–639

    Article  PubMed  Google Scholar 

  39. Lepage JF, Saint-Amour D, Théoret H (2008) EEG and neuronavigated single-pulse TMS in the study of the observation/execution matching system: are both techniques measuring the same process? J Neurosci Methods 175:17–24

    Article  PubMed  Google Scholar 

  40. Liu JZ, Yao B, Siemionow V, Sahgal V, Wang X, Sun J, Yue GH (2005) Fatigue induces greater brain signal reduction during sustained than preparation phase of maximal voluntary contraction. Brain Res 1057:113–126

    Article  CAS  PubMed  Google Scholar 

  41. Machii K, Cohen D, Ramos-Estebanez C, Pascual-Leone A (2006) Safety of rTMS to non-motor cortical areas in healthy participants and patients. Clin Neurophysiol 117:455–471

    Google Scholar 

  42. Maeda F, Keenan JP, Tormos JM, Topka H, Pascual-Leone A (2000) Modulation of corticospinal excitability by repetitive transcranial magnetic stimulation. Clin Neurophysiol 111:800–805

    Article  CAS  PubMed  Google Scholar 

  43. Marshall L, Helgadóttir H, Mölle M, Born J (2006) Boosting slow oscillations during sleep potentiates memory. Nature 444:610–613

    Article  CAS  PubMed  Google Scholar 

  44. Massimini M, Ferrarelli F, Esser SK, Riedner BA, Huber R, Murphy M, Peterson MJ, Tononi G (2007) Triggering sleep slow waves by transcranial magnetic stimulation. Proc Natl Acad Sci 104:8496–8501

    Article  CAS  PubMed  Google Scholar 

  45. Miniussi C, Thut G (2009) Combining TMS and EEG Offers New Prospects in Cognitive Neuroscience. Brain Topogr. doi:10.1007/s10548-009-0083-8

  46. Muellbacher W, Ziemann U, Boroojerdi B, Hallett M (2000) Effects of low-frequency transcranial magnetic stimulation on motor excitability and basic motor behavior. Clin Neurophysiol 111:1002–1007

    Article  CAS  PubMed  Google Scholar 

  47. Münchau A, Bloem BR, Irlbacher K, Trimble MR, Rothwell JC (2002) Functional connectivity of human premotor and motor cortex explored with repetitive transcranial magnetic stimulation. J Neurosci 22:554–561

    PubMed  Google Scholar 

  48. Nelson AJ, Brooke JD, McIlroy WE, Bishop DC, Norrie RG (2001) The gain of initial somatosensory evoked potentials alters with practice of an accurate motor task. Brain Res 890:272–279

    Article  CAS  PubMed  Google Scholar 

  49. Nyffeler T, Wurtz P, Lüscher HR, Hess CW, Senn W, Pflugshaupt T, von Wartburg R, Lüthi M, Müri RM (2006) Extending lifetime of plastic changes in the human brain. Eur J Neurosci 24:2961–2966

    Article  PubMed  Google Scholar 

  50. Okamura H, Jing H, Takigawa M (2001) EEG modification induced by repetitive transcranial magnetic stimulation. J Clin Neurophysiol 18:318–325

    Article  CAS  PubMed  Google Scholar 

  51. Oliviero A, Strens LH, Di Lazzaro V, Tonali PA, Brown P (2003) Persistent effects of high frequency repetitive TMS on the coupling between motor areas in the human. Exp Brain Res 149:107–113

    PubMed  Google Scholar 

  52. Ortu E, Ruge D, Deriu F, Rothwell JC (2009) Theta Burst Stimulation over the human primary motor cortex modulates neural processes involved in movement preparation. Clin Neurophysiol 120:1195–1203

    Article  PubMed  Google Scholar 

  53. Pascual-Leone A, Valls-Sole J, Wassermann EM, Hallett M (1994) Responses to rapid-rate transcranial magnetic stimulation of the human motor cortex. Brain 117:847–858

    Article  PubMed  Google Scholar 

  54. Pasley BN, Allen EA, Freeman RD (2009) State-dependent variability of neuronal responses to transcranial magnetic stimulation of the visual cortex. Neuron 62:291–303

    Article  CAS  PubMed  Google Scholar 

  55. Pastor MA, Thut G, Pascual-Leone A (2006) Modulation of steady-state auditory evoked potentials by cerebellar rTMS. Exp Brain Res 175:702–709

    Article  PubMed  Google Scholar 

  56. Peinemann A, Reimer B, Löer C, Quartarone A, Münchau A, Conrad B, Siebner HR (2004) Long-lasting increase in corticospinal excitability after 1800 pulses of subthreshold 5 Hz repetitive TMS to the primary motor cortex. Clin Neurophysiol 115:1519–1526

    Article  PubMed  Google Scholar 

  57. Poreisz C, Antal A, Boros K, Brepohl N, Csifcsák G, Paulus W (2008) Attenuation of N2 amplitude of laser-evoked potentials by theta burst stimulation of primary somatosensory cortex. Exp Brain Res 185:611–621

    Article  PubMed  Google Scholar 

  58. Ragert P, Becker M, Tegenthoff M, Pleger B, Dinse HR (2004) Sustained increase of somatosensory cortex excitability by 5 Hz repetitive transcranial magnetic stimulation studied by paired median nerve stimulation in humans. Neurosci Lett 356:91–99

    Article  CAS  PubMed  Google Scholar 

  59. Restuccia D, Ulivelli M, De Capua A, Bartalini S, Rossi S (2007) Modulation of high-frequency (600 Hz) somatosensory-evoked potentials after rTMS of the primary sensory cortex. Eur J Neurosci 26:2349–2358

    Article  PubMed  Google Scholar 

  60. Ridding MC, Rothwell JC (2007) Is there a future for therapeutic use of transcranial magnetic stimulation? Nat Rev Neurosci 8:559–567

    Article  CAS  PubMed  Google Scholar 

  61. Robertson EM, Théoret H, Pascual-Leone A (2003) Studies in cognition: the problems solved and created by transcranial magnetic stimulation. J Cogn Neurosci 15:948–960

    Article  CAS  PubMed  Google Scholar 

  62. Rollnik JD, Schröder C, Rodríguez-Fornells A, Kurzbuch AR, Däuper J, Möller J, Münte TF (2004) Functional lesions and human action monitoring: combining repetitive transcranial magnetic stimulation and event-related brain potentials. Clin Neurophysiol 115:145–153

    Article  PubMed  Google Scholar 

  63. Romei V, Brodbeck V, Michel C, Amedi A, Pascual-Leone A, Thut G (2008a) Spontaneous fluctuations in posterior alpha-band EEG activity reflect variability in excitability of human visual areas. Cereb Cortex 18:2010–2018

    Article  PubMed  Google Scholar 

  64. Romei V, Rihs T, Brodbeck V, Thut G (2008b) Resting electroencephalogram alpha-power over posterior sites indexes baseline visual cortex excitability. Neuroreport 19:203–208

    Article  PubMed  Google Scholar 

  65. Rossi S, Rossini PM (2004) TMS in cognitive plasticity and the potential for rehabilitation. Trends Cogn Sci 8:273–279

    Article  PubMed  Google Scholar 

  66. Rossi S, Pasqualetti P, Rossini PM, Feige B, Ulivelli M, Glocker FX, Battistini N, Lucking CH, Kristeva-Feige R (2000) Effects of repetitive transcranial magnetic stimulation on movement-related cortical activity in humans. Cereb Cortex 10:802–808

    Article  CAS  PubMed  Google Scholar 

  67. Rossi S, Hallett M, Rossini PM, Pascual-Leone A et al (2009) Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. doi:10.1016/j.clinph.2009.08.016

  68. Sağlam M, Matsunaga K, Murayama N, Hayashida Y, Huang YZ, Nakanishi R (2008) Parallel inhibition of cortico-muscular synchronization and cortico-spinal excitability by theta burst TMS in humans. Clin Neurophysiol 119:2829–2838

    Article  PubMed  Google Scholar 

  69. Satow T, Mima T, Yamamoto J, Oga T, Begum T, Aso T, Hashimoto N, Rothwell JC, Shibasaki H (2003) Short-lasting impairment of tactile perception by 0.9 Hz-rTMS of the sensorimotor cortex. Neurology 60:1045–1047

    Article  CAS  PubMed  Google Scholar 

  70. Sauseng P, Klimesch W, Gerloff C, Hummel FC (2008) Spontaneous locally restricted EEG alpha activity determines cortical excitability in the motor cortex. Neuropsychologia [Epub ahead of print]

  71. Schillings ML, Kalkman JS, Van Der Werf SP, Bleijenberg G, van Engelen BG, Zwarts MJ (2006) Central adaptations during repetitive contractions assessed by the readiness potential. Eur J Appl Physiol 97:521–526

    Article  CAS  PubMed  Google Scholar 

  72. Schindler K, Nyffeler T, Wiest R, Hauf M, Mathis J, Hess ChW, Müri R (2008) Theta burst transcranial magnetic stimulation is associated with increased EEG synchronization in the stimulated relative to unstimulated cerebral hemisphere. Neurosci Lett 436:31–34

    Article  CAS  PubMed  Google Scholar 

  73. Schutter DJ, van Honk J (2003) Reductions in CI amplitude after repetitive transcranial magnetic stimulation (rTMS) over the striate cortex. Brain Res Cogn Brain Res 16:488–491

    Article  PubMed  Google Scholar 

  74. Schutter DJ, van Honk J, d’Alfonso AA, Postma A, de Haan EH (2001) Effects of slow rTMS at the right dorsolateral prefrontal cortex on EEG asymmetry and mood. Neuroreport 12:445–447

    Article  CAS  PubMed  Google Scholar 

  75. Schutter DJ, van Honk J, d’Alfonso AA, Peper JS, Panksepp J (2003) High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett 336:73–76

    Article  CAS  PubMed  Google Scholar 

  76. Siebner HR, Lang N, Rizzo V, Nitsche MA, Paulus W, Lemon RN, Rothwell JC (2004) Preconditioning of low-frequency repetitive transcranial magnetic stimulation with transcranial direct current stimulation: evidence for homeostatic plasticity in the human motor cortex. J Neurosci 24:3379–3385

    Article  CAS  PubMed  Google Scholar 

  77. Silvanto J, Pascual-Leone A (2008) State-dependency of transcranial magnetic stimulation. Brain Topogr 21:1–10

    Article  PubMed  Google Scholar 

  78. Silvanto J, Muggleton NG, Cowey A, Walsh V (2007a) Neural adaptation reveals state-dependent effects of transcranial magnetic stimulation. Eur J Neurosci 25:1874–1881

    Article  PubMed  Google Scholar 

  79. Silvanto J, Muggleton NG, Cowey A, Walsh V (2007b) Neural activation state determines behavioral susceptibility to modified theta burst transcranial magnetic stimulation. Eur J Neurosci 26:523–528

    Article  PubMed  Google Scholar 

  80. Strens LH, Oliviero A, Bloem BR, Gerschlager W, Rothwell JC, Brown P (2002) The effects of subthreshold 1 Hz repetitive TMS on cortico-cortical and interhemispheric coherence. Clin Neurophysiol 113:1279–1285

    Article  PubMed  Google Scholar 

  81. Tamura Y, Hoshiyama M, Nakata H, Hiroe N, Inui K, Kaneoke Y, Inoue K, Kakigi R (2005) Functional relationship between human rolandic oscillations and motor cortical excitability: an MEG study. Eur J Neurosci 21:2555–2562

    Article  PubMed  Google Scholar 

  82. Taylor PC, Walsh V, Eimer M (2008) Combining TMS and EEG to study cognitive function and cortico–cortico interactions. Behav Brain Res 191:141–147

    Article  PubMed  Google Scholar 

  83. Thut G, Miniussi C (2009) New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci 13:182–189

    Article  PubMed  Google Scholar 

  84. Thut G, Théoret H, Pfennig A, Ives J, Kampmann F, Northoff G, Pascual-Leone A (2003) Differential effects of low-frequency rTMS at the occipital pole on visual-induced alpha desynchronization and visual-evoked potentials. Neuroimage 18:334–347

    Article  CAS  PubMed  Google Scholar 

  85. Thut G, Nietzel A, Brandt SA, Pascual-Leone A (2006) Alpha-band electroencephalographic activity over occipital cortex indexes visuospatial attention bias and predicts visual target detection. J Neurosci 26:9494–9502

    Article  CAS  PubMed  Google Scholar 

  86. Tsuji T, Rothwell JC (2002) Long lasting effects of rTMS and associated peripheral sensory input on MEPs, SEPs and transcortical reflex excitability in humans. J Physiol 540:367–376

    Article  CAS  PubMed  Google Scholar 

  87. Urushihara R, Murase N, Rothwell JC, Harada M, Hosono Y, Asanuma K, Shimazu H, Nakamura K, Chikahisa S, Kitaoka K, Sei H, Morita Y, Kaji R (2006) Effect of repetitive transcranial magnetic stimulation applied over the premotor cortex on somatosensory-evoked potentials and regional cerebral blood flow. Neuroimage 31:699–709

    Article  PubMed  Google Scholar 

  88. Valero-Cabre A, Payne BR, Pascual-Leone A (2007) Opposite impact on (14) C-2-deoxyglucose brain metabolism following patterns of high and low frequency repetitive transcranial magnetic stimulation in the posterior parietal cortex. Exp Brain Res 176:603–615

    Article  CAS  PubMed  Google Scholar 

  89. Van Der Werf YD, Paus T (2006) The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions. Exp Brain Res 175:231–245

    Article  Google Scholar 

  90. Walsh V, Cowey A (2000) Transcranial magnetic stimulation and cognitive neuroscience. Nat Rev Neurosci 1:73–79

    Article  CAS  PubMed  Google Scholar 

  91. Wassermann EM (1998) Risk and safety of repetitive transcranial magnetic stimulation: report and suggested guidelines from the International Workshop on the Safety of Repetitive Transcranial Magnetic Stimulation. Electroencephalogr Clin Neurophysiol 108:1–16

    Article  CAS  PubMed  Google Scholar 

  92. Wolters A, Schmidt A, Schramm A, Zeller D, Naumann M, Kunesch E, Benecke R, Reiners K, Classen J (2005) Timing-dependent plasticity in human primary somatosensory cortex. J Physiol 565:1039–1052

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Gregor Thut.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Thut, G., Pascual-Leone, A. A Review of Combined TMS-EEG Studies to Characterize Lasting Effects of Repetitive TMS and Assess Their Usefulness in Cognitive and Clinical Neuroscience. Brain Topogr 22, 219 (2010). https://doi.org/10.1007/s10548-009-0115-4

Download citation

Keywords

  • Transcranial magnetic stimulation
  • Electroencephalography
  • Aftereffects
  • Repetitive TMS
  • Safety