Skip to main content
Log in

Neuromagnetic Changes of Brain Rhythm Evoked by Intravenous Olfactory Stimulation in Humans

  • Original Paper
  • Published:
Brain Topography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Summary:

To identify the changes in the respective frequency band and brain areas related to olfactory perception, we measured magnetoencephalographic (MEG) signals before and after instilling intravenously thiamine propyl disulfide (TPD) and thiamine tetrahydrofurfuryl disulfide monohydrochloride (TTFD), which evoked a strong and weak sensation of odor, respectively. For the frequency analysis of MEG, a beamformer program, synthetic aperture magnetometry (SAM), was employed and event-related desynchronization (ERD) or synchronization (ERS) was statistically determined. Both strong and weak odors induced ERD in (1) beta band (13–30 Hz) in the right precentral gyrus, and the superior and middle frontal gyri in both hemispheres, (2) low gamma band (30–60 Hz) in the left superior frontal gyrus and superior parietal lobule, and the middle frontal gyrus in both hemispheres, and (3) high gamma band 2 (100–200 Hz) in the right inferior frontal gyrus. TPD induced ERD in the left temporal, parietal and occipital lobes, while TTFD induced ERD in the right temporal, parietal and occipital lobes. The results indicate that physiological functions in several regions in the frontal lobe may change and the strength of the odor may play a different role in each hemisphere during olfactory perception in humans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adrian, E.D. Olfactory reactions in the brain of the hedgehog. J. Physiol., 1942, 100: 459–473.

    Google Scholar 

  • Babiloni, C., Carducci, F., Cincotti, F., Rossini, PM., Neuper, C., Pfurtscheller, G. and Babiloni, F. Human movement-related potentials vs desynchronization of EEG alpha rhythm: a high-resolution EEG study. Neuroimage, 1999, 10: 658–665.

    Article  CAS  PubMed  Google Scholar 

  • Bastiaansen, M.C., Bocker, K.B., Brunia, C.H., de Munck, J.C. and Spekreijse, H. Event-related desynchronization during anticipatory attention for an upcoming stimulus: a comparative EEG/MEG study. Clin. Neurophysiol., 2001, 112: 393–403.

    Article  CAS  PubMed  Google Scholar 

  • Brauchli, P., Ruegg, PB., Etzweiler, F. and Zeier, H. Electrocortical and autonomic alteration by administration of a pleasant and an unpleasant odor. Chem. Senses, 1995, 20: 505–515.

    CAS  PubMed  Google Scholar 

  • Bresseler, S.L. and Freeman, W.J. Frequency analysis of olfactory system EEG in cat, rabbit, and rat. Electroencephalogr. Clin. Neurophysiol., 1980, 50: 19–24.

    Google Scholar 

  • Cerf-Ducastel, M. and Murphy, C. fMRI activation in response to odorants orally delivered in aqueous solutions. Chem. Senses, 2001, 26: 625–637.

    CAS  PubMed  Google Scholar 

  • Djordjevic, J., Zatorre, R.J., Petrides, M., Boyle, J.A. and Jones-Gotman, M. Functional neuroimaging of odor imagery. Neuroimage, 2005, 24: 791–801.

    Article  CAS  PubMed  Google Scholar 

  • Engel, A.K., Kreiter, A.K., Konig, P. and Singer, W. Synchronization of oscillatory neuronal responses between striate and extrastriate visual cortical areas of the cat. Proc. Natl. Acad. Sci. USA, 1991, 88: 6048–6052.

    CAS  PubMed  Google Scholar 

  • Fawcett, I.P., Barnes, G.R., Hillebrand, A. and Singh, K.D. The temporal frequency tuning of human visual cortex investigated using synthetic aperture magnetometry. Neuroimage, 2004, 21: 1542–1553.

    Article  PubMed  Google Scholar 

  • Franowicz, M.N. and Barth, D.S. Comparison of evoked potentials and high-frequency (gamma-band) oscillating potentials in rat auditory cortex. J. Neurophysiol., 1995, 74: 96–112.

    CAS  PubMed  Google Scholar 

  • Freeman, W.J. Topographic organization of primary olfactory nerve in cat and rabbit as shown by evoked potentials. Electroencephalogr. Clin. Neurophysiol., 1974, 36: 33–45.

    CAS  PubMed  Google Scholar 

  • Gray, C.M. and Singer, W. Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc. Natl. Acad. Sci. USA, 1989, 86: 1698–1702.

    CAS  PubMed  Google Scholar 

  • Hari, R, and Salmelin, R. Human cortical oscillations: a neuromagnetic view through the skull. Trends Neurosci., 1997, 20: 44–49.

    Article  CAS  PubMed  Google Scholar 

  • Herdman, A.T., Wollbrink, A., Chau, W., Ishii, R., Ross, B. and Pantev, C. Determination of activation areas in the human auditory cortex by means of synthetic aperture magnetometry. Neuroimage, 2003, 20: 995–1005.

    Article  PubMed  Google Scholar 

  • Hirata, M., Kato, A., Taniguchi, M., Ninomiya, H., Cheyne, D., Robinson, S.E., Maruno, M., Kumura, E., Ishii, R., Hirabuki, N., Nakamura, H. and Yoshimine, T. Frequency-dependent spatial distribution of human somatosensory evoked neuromagnetic fields. Neurosci. Lett., 2002, 318: 73–76.

    Article  CAS  PubMed  Google Scholar 

  • Hirata, M., Kato, A., Taniguchi, M., Saitoh, Y., Ninomiya, H., Ihara, A., Kishima, H., Oshino, S., Baba, T., Yorihuji, S. and Yoshimine, T. Determination of language dominance with synthetic aperture magnetometry: comparison with the Wada test. Neuroimage, 2004, 23: 46–53.

    Article  PubMed  Google Scholar 

  • Ihara, A., Hirata, M., Yanagihara, K., Ninomiya, H., Imai, K. and Ishii, R. Neuromagnetic gamma-band activity in the primary and secondary somatosensory areas. Neuroreport, 2003, 14: 273–277.

    PubMed  Google Scholar 

  • Jones-Gotman, M., Zatorre, RJ., Gendes, F., Olivier, F., Andermann, F., McMackin, D., Staunton, H., Siegel, A.M. and Wieser, H.G. Contribution of medial versus lateral temporal-lobe structures to human odour identification. Brain, 1997, 120: 1845–1856.

    Article  PubMed  Google Scholar 

  • Kettenmann, B., Jousmaki, V., Portin, K., Salmerin, R., Kobal, G. and Hari, R. Odorants activate the human superior temporal sulcus. Neurosci. Lett., 1996, 203: 143–145.

    Article  CAS  PubMed  Google Scholar 

  • Kettenmann, B., Hummel, C., Stefan, H. and Kobal, G. Multiple olfactory activity in the human neocortex identified by magnetic source imaging. Chem. Senses, 1997, 22: 493–502.

    CAS  PubMed  Google Scholar 

  • Klimesch, W., Schimke, H. and Schwaiger, J. Episodic and semantic memory: an analysis in the EEG theta and alpha band. Electroencephalogr. Clin. Neurophysiol., 1994, 91: 428–441.

    CAS  PubMed  Google Scholar 

  • Klemm, W.R., Lutes, S.D., Hendrix, D.V. and Warrenberg, S. Topographical EEG maps of human responses to odor. Chem. Senses, 1992, 17: 347–361.

    Google Scholar 

  • Kobal, G. and Hummel, C. Cerebral chemosensory evoked potentials elicited by chemical stimulation of the human olfactory and respiratory nasal mucosa. Electroencephalogr. Clin. Neurophysiol., 1988, 71: 241–250.

    CAS  PubMed  Google Scholar 

  • Koizuka, I., Yano, H., Nagahara, M., Mochizuki, R., Seo, R., Shimada, K., Kubo, T. and Nogawa, T. Functional imaging of the human olfactory cortex by magnetic resornance imaging. ORL J. Otorhinolaryngol. Relat. Spec., 1994, 53: 273–275.

    Google Scholar 

  • Lopes da Silva, F. Neural mechanisms underlying brain waves: from neural membranes to networks. Electroencephalogr. Clin. Neurophysiol., 1991, 79: 81–93.

    CAS  PubMed  Google Scholar 

  • Lorig, T.S., Huffman, E., DeMartino, A. and DeMarco, J. The effects of low concentration odors on EEG activity and behaviour. J. Psychophysiol., 1991, 9: 178–179.

    Google Scholar 

  • MacDonald, K.D. and Barth, D.S. High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex. Brain Res., 1995, 694: 1–12.

    Article  CAS  PubMed  Google Scholar 

  • Makinen, V.T., May, P.J. and Tiitinen, H. Human auditory event-related processes in the time-frequency plane. Neuroreport, 2004, 15: 1767–1771.

    PubMed  Google Scholar 

  • Neuper, C. and Pfurtscheller, G. Event-related dynamics of cortical rhythms: frequency-specific features and functional correlates. Int. J. Psychophysiol., 2001, 43: 41–58.

    Article  CAS  PubMed  Google Scholar 

  • Ottoson, D. Olfactory bulb potentials induced by electrical stimulation of the nasal mucosa in the frog. Acta Physiol. Scand., 1959, 47:160–172.

    CAS  PubMed  Google Scholar 

  • Paradiso, G., Cunic, D., Saint-Cyr, J.A., Hoque, T., Lozano, A.M., Lang, A.E. and Chen, R. Involvement of human thalamus in the preparation of self-paced movement. Brain, 2004, 127: 2717–2731.

    Article  PubMed  Google Scholar 

  • Pfurtscheller, G. and Neuper, C. Simultaneous EEG 10 Hz desynchronization and 40 Hz synchronization during finger movements. Neuroreport, 1992, 3: 1057–1060.

    CAS  PubMed  Google Scholar 

  • Pfurtscheller, G., Neuper, C. and Kalcher, J. 40-Hz oscillations during motor behavior in man. Neurosci. Lett., 1993, 164: 179–182.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, S.E. and Vrba, J. Functional neuroimaging by synthetic aperture magnetometry (SAM). In: T. Yoshimoto, M. Kotani, S. Kuriki, H. Karibe, and N. Nakasato (Eds.), Recent Advances in Biomagnetism. Tohoku University Press, Sendai, Japan, 1999: 302–305.

    Google Scholar 

  • Sakuma, K., Kakigi, R., Kaneoke, Y., Hoshiyama, M., Koyama, S., Nagata, O., Takeshima, Y., Ito, Y. and Nakashima, K. Odorant evoked magnetic fields in humans. Neurosci. Res., 1997, 27: 115–122

    Article  CAS  PubMed  Google Scholar 

  • Schulz, M., Chau, W., Graham, S.J., McIntosh, A.R., Ross, B., Ishii, R. and Pantev, C. An integrative MEG-fMRI study of the primary somatosensory cortex using cross-modal correspondence analysis. Neuroimage, 2004, 22: 120–133.

    Article  PubMed  Google Scholar 

  • Serrien, D.J., Pogosyan, A.H. and Brown, P. Influence of working memory on patterns of motor related cortico-cortical coupling. Exp. Brain Res., 2004, 155: 204–210.

    Article  PubMed  Google Scholar 

  • Small, D.M., Jones-Gotman, M., Zatorre, R.J., Petriedes, M. and Evans, A.C. Flavor processing: more than the sum of its parts. Neuroreport, 1997, 8: 3913–3917.

    CAS  PubMed  Google Scholar 

  • Sobel, N., Prabhakaran, V., Desmond, J.E., Glover, G.H., Goode, R.L., Sullivan, E.V. and Gabrieli, J.D., Sniffing and smelling: separate subsystems in the human olfactory cortex. Nature, 1998, 392: 282–286.

    Article  CAS  PubMed  Google Scholar 

  • Sobel, N., Prabhakaran, V., Zhao, Z., Desmond, J.E., Glover, G.H., Sullivan, E.V. and Gabrieli, J.D. Time course of odorant-induced activation in the human primary olfactory cortex. J. Neurophysiol., 2000, 83: 537–551.

    CAS  PubMed  Google Scholar 

  • Stacher, G., Bauer, H. and Steinringer, H. Cholecystokinin decreases appetite and activation evoked by stimuli arising from the preparation of a meal in man. Physiol. Behav., 1979, 23: 325–331.

    Article  CAS  PubMed  Google Scholar 

  • Tamura, Y., Hoshiyama, M., Nakata, K., Hiroe, N., Inui, K., Kaneoke, Y., Inoue, K. and Kakigi, R. Functional relationship between human rolandic oscillations and motor cortical excitability: an MEG study. Eur. J. Neurosci., 2005, 21: 2555–2562.

    Article  PubMed  Google Scholar 

  • Tanabe, T., Yarita, H., Iino, M., Ooshima, Y. and Takagi, S.F. An olfactory projection area in orbitofrontal cortex of the monkey. J. Neurophysiol., 1975, 38: 1269–1283.

    CAS  PubMed  Google Scholar 

  • Taniguchi, M., Kato, A., Fujita, N., Hirata, M., Tanaka, H., Kihara, T., Ninomiya, H., Hirabuki, N., Nakamura, H., Robinson, S.E., Cheyne, D. and Yoshimine, T. Movement-related desynchronization of the cerebral cortex studied with spatially filtered magnetoencephalography. Neuroimage, 2000, 12: 298–306.

    Article  CAS  PubMed  Google Scholar 

  • Tonoike, M., Yamaguchi, M., Kaetsu, I., Kida, H., Seo, R. and Koizuka, I. Ipsilateral dominance of human olfactory activated centers estimated from event-related magnetic fields measured by 122-channel whole-head neuromagnetometer using odorant stimuli synchronized with respirations. Ann. N.Y. Acad. Sci., 1998, 855: 579–590.

    Article  CAS  PubMed  Google Scholar 

  • Walla, P., Hufnagl, B., Lindinger, G., Imhof, H., Deecke, L. and Lang, W. Left temporal and temporoparietal brain activity depends on depth of word encoding: a magnetoencephalographic study in healthy young subjects. Neuroimage, 2001, 13: 402–409.

    Article  CAS  PubMed  Google Scholar 

  • Walla, P., Hufnagl, B., Lehrner, J., Mayer, D., Lindinger, G., Imhof, H., Deecke, L. and Lang, W. Olfaction and depth of word processing: a magnetoencephalographic study. Neuroimage, 2003, 18: 104–116.

    Article  PubMed  Google Scholar 

  • Yamamoto, C. and Yamamoto, T. Oscillation potential in strychninized olfactory bulb. Jpn. J. Physiol., 1962, 12:14–24.

    CAS  PubMed  Google Scholar 

  • Yano. Studies on the nutritional value of allium plants: changes of thiamine contents in the blood after oral or parenteral administration of allithiamine. Vitamin, 1958, 15: 617–621. (in Japanese).

    CAS  Google Scholar 

  • Zatorre, R.J., Jones-Gotman, M., Evans, A.C. and Meyer, E. Functional localization and lateralization of human olfactory cortex. Nature, 1992, 360: 339–340.

    Article  CAS  PubMed  Google Scholar 

  • Zelano, C., Bensafi, M., Porter, J., Mainland, J., Johnson, B., Bremner, E., Telles, C., Khan, R. and Sobel, N. Attentional modulation in human primary olfactory cortex. Nat. Neurosci., 2005, 8: 114–120.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ryusuke Kakigi.

Additional information

This study was supported by Japan Space Forum, Grant-in-Aid for Scientific Research on Priority Areas -Higher-Order Brain Functions-from The Ministry of Education, Culture, Sports, Science and Technology, Japan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyanari, A., Kaneoke, Y., Ihara, A. et al. Neuromagnetic Changes of Brain Rhythm Evoked by Intravenous Olfactory Stimulation in Humans. Brain Topogr 18, 189–199 (2006). https://doi.org/10.1007/s10548-006-0268-3

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-006-0268-3

Key words:

Navigation