Brain Topography

, 18:281 | Cite as

Electrical Conductivities of the Freshly Excised Cerebral Cortex in Epilepsy Surgery Patients; Correlation with Pathology, Seizure Duration, and Diffusion Tensor Imaging

  • M. AkhtariEmail author
  • N. Salamon
  • R. Duncan
  • I. Fried
  • G. W. Mathern


The electrical conductivities (σ) of freshly excised neocortex and subcortical white matter were studied in the frequency range of physiological relevance for EEG (5–1005 Hz) in 21 patients (ages 0.67 to 55 years) undergoing epilepsy neurosurgery. Surgical patients were classified as having cortical dysplasia (CD) or non-CD pathologies. Diffusion tensor imaging (DTI) for apparent diffusion coefficient (ADC) and fractional anisotropy (FA) was obtained in 9 patients. Results found that electrical conductivities in freshly excised neocortex vary significantly from patient to patient (σ = 0.0660–0.156 S/m). Cerebral cortex from CD patients had increased conductivities compared with non-CD cases. In addition, longer seizure durations positively correlated with conductivities for CD tissue, while they negatively correlated for non-CD tissue. DTI ADC eigenvalues inversely correlated with electrical conductivity in CD and non-CD tissue. These results in a small initial cohort indicate that electrical conductivity of freshly excised neocortex from epilepsy surgery patients varies as a consequence of clinical variables, such as underlying pathology and seizure duration, and inversely correlates with DTI ADC values. Understanding how disease affects cortical electrical conductivity and ways to non-invasively measure it, perhaps through DTI, could enhance the ability to localize EEG dipoles and other relevant information in the treatment of epilepsy surgery patients.

Key Words

Conductivity Brain Cortical dysplasia DTI EEG MEG 


  1. Awada, K.A., Jackson, D.R., Baumann, S.B., Williams, J.T., Wilton, D.R., Fink, P.W. and Prasky, B.R. Effect of conductivity uncertainties and modeling errors on EEG source localization using a 2-D model. IEEE Trans. Biomed. Eng. 1998, 45(9): 1135–1145.PubMedCrossRefGoogle Scholar
  2. Baillet, S., Garnero, L., Marin, G. and Hugonin, J.P. Combined MEG and EEG source imaging by minimization of mutual information. IEEE Trans. Biomed. Eng. 1999, 46(5): 522–534.PubMedCrossRefGoogle Scholar
  3. Baumann, S.B., Wonzy, D.R., Kelly, S.K. and Meno, F.M. IEEE Trans. Biomed. Eng. 1997, 44(3): 220–223.CrossRefGoogle Scholar
  4. Diekmann, V., Becker, W., Jurgens, R., Grozinger, B., Kleiser, B., Richter, H.P. and Wollinsky, K.H. Localization of epileptic foci with electric, magnetic and combined electromagnetic models. Electroencephalogr. Clin. Neurophysiol. 1998, 106.Google Scholar
  5. Ebersole, J.S. Non-invasive pre-surgical evaluation with EEG/MEG source analysis. Electroencephalogr. Clin. Neurophysiol. Suppl. 1999, 50: 167–174.PubMedGoogle Scholar
  6. Ebersole, J., Esquires, K. and Gamelin, J. Simultaneous MEG and EEG provide complementary dipole models of temporal lobe spikes. Epilepsia 1993, 34: 143 (abstract).Google Scholar
  7. Fuchs, M., Drenckhahn, R., Wischmann, H.A., and Wagner, M. An improved boundary element method for realistic volume-conductor modeling. IEEE Trans. Biomed. Eng. 1998, 45(8): 980–997.PubMedCrossRefGoogle Scholar
  8. Fuchs, M., Wagner, M., Wischmann, H.A., Kohler, T., Theissen, A., Drenckhahn, R. and Buchner, H. Improving source reconstructions by combining bioelectric and biomagnetic data. Electroencephalogr. Clin. Neurophysiol. 1998, 107(2): 93–111.PubMedCrossRefGoogle Scholar
  9. Gabriel, C. Dielectric properties of biological tissue: Variation with age. Bioelectromagnetics 2005, 7(Suppl.): S12–S18.PubMedCrossRefGoogle Scholar
  10. Gabriel, C., Gabriel, S. and Corthout, E. The dielectric properties of biological tissues: I. Literature survey. Phys. Med. Biol. 1996, 41: 2231–2249.PubMedCrossRefGoogle Scholar
  11. Geddes, L.A. and Baker, L.E. The specific resistance of biological material—A compendium of data for the biomedical engineer and physiologist. Med. & Biol. Eng. 1967, 5: 271–293.CrossRefGoogle Scholar
  12. Gencer, N.G. and Acar, C.E. Sensitivity of EEG and MEG measurements to tissue conductivity. Phys. Med. Biol. 2004, 49(5): 701–717.PubMedCrossRefGoogle Scholar
  13. Gupta, R.K., Sinha, U., Cloughesy, T.F. and Alger, J.R. Inverse correlation between the choline magnetic resonance spectroscopy signal intensity and the apparent diffusion coefficient in human glioma. Magn. Reson. Med. 1999, 41: 2–7.PubMedCrossRefGoogle Scholar
  14. Gutierrez, D., Nehorai, A. and Muravchik, C.H. Estimating brain conductivities and dipole source signals with EEG arrays. IEEE Trans. Biomed. Eng. 2004, 51(12): 2113–2122.PubMedCrossRefGoogle Scholar
  15. Hämäläinen, M.S. and Sarvas, J. Realistic conductivity geometry model of the human head for interpretation of neuromagnetic data. IEEE Trans. Biomed. Eng. 1989, 36(2): 165–171.PubMedCrossRefGoogle Scholar
  16. Haueisen, J., Tuch, D.S., Ramon, C., Scimpf, P.H., Wedeen, V.J., George, J.S. and Belliveau, J.W. The influence of brain tissue anisotropy on human EEG and MEG. Neuroimage 2002, 15(1): 159–166.PubMedCrossRefGoogle Scholar
  17. Haueisen, J., Bottner, A., Nowak, H., Brauer, H. and Weiller, C. The influence of conductivity changes in boundary element compartments on the forward and inverse problem in electroencephalography and magnetoencephalography. Biomed. Tech. (Berl.) 1999, 44(6): 150–157.Google Scholar
  18. Haueisen, J., Ramon, C., Eiselt, M., Brauer, H. and Nowak, H. Influence of tissue resistivities on neuromagnetic fields and electric potentials studied with a finite element model of the head. IEEE Trans. Biomed. Eng. 1997, 44(8).Google Scholar
  19. Huotilainen, M., Winkler, I., Alho, K., Escera, C., Virtanen, J., Ilmoniemi, R.J., Jaaskelainen, I.P., Pekkonen, E. and Naatannen, R. Combined mapping of human auditory EEG and MEG responses. Electroencephalogr. Clin. Neurophysiol. 1998, 108(4): 370–379.PubMedCrossRefGoogle Scholar
  20. Law, S. Thickness and resistivity variations over the upper surface of the human skull. Brain Topogr. 1993, 6: 99–109.PubMedCrossRefGoogle Scholar
  21. Marin, G., Guerin, C., Baillet, S., Garnero, L. and Meunier, G. Influence of skull anisotropy for the forward and inverse problem in EEG: Simulation studies using FEM on realistic head models. Hum. Brain Mapp. 1998, 6(4): 250–269.PubMedCrossRefGoogle Scholar
  22. Mathern, G.W., Giza, C.C., Yudovin, S., Vinters, H.V., Peacock, W.J., Shewmon, D.A. and Shields, W.D. Postoperative seizure control and antiepileptic drug use in pediatric epilepsy surgery patients: the UCLA experience, 1986–1997. Epilepsia 1999, 40(12): 1740–1749.PubMedCrossRefGoogle Scholar
  23. Nunez, P. and Srinivasam, R. Electric fields of the brain: The neurophysics of EEG, 2nd edn. Oxford University Press, USA, 2005.Google Scholar
  24. Nunez, P.L. Neocortical dynamics and human EEG rhythms. Oxford University Press, New York, 1995, p. 667.Google Scholar
  25. Okada, Y.C., Lahteenmaki, A. and Xu, C. Experimental analysis of distortion of magnetoencephalography signals by skull. Clin. Neurophysiol. 1999, 110(2): 230–238.PubMedCrossRefGoogle Scholar
  26. Ollikainen, J.O., Vauhkonen, M., Karjalainen, P.A. and Kaipio, J.P. Effects of local skull inhomogeneities on EEG source estimation. Med. Eng. Phys. 1999, 21(3): 143–154.PubMedCrossRefGoogle Scholar
  27. Pohlmeier, R., Buchner, H., Knoll, G., Rienäcker, A., Beckmann, R. and Pesch, J. The influence of skull—Conductivity misspecification on inverse source localization in realistically shaped finite element head models. Brain Topogr. 1997, 9(3): 157–162.PubMedCrossRefGoogle Scholar
  28. Schmid, G., Neubauer, G., Illievich, U.M. and Alesch, F. Dielectric properties of porcine brain tissue in the transition from life to death at frequencies from 800 to 1900 MHz. Bioelectromagnetics 2003a, 24(6): 413–422.CrossRefGoogle Scholar
  29. Schmid, G., Neubauer, G. and Mazal, P.R. Dielectric properties of human brain tissue measured less than 10 h postmortem at frequencies from 800 to 2450 MHz. Bioelectromagnetics 2003b, 24(6): 423–430.CrossRefGoogle Scholar
  30. Schwan, H.P. Electrode polarization impedance and measurements in biological materials. Ann. N.Y. Acad. Sci. 1968, 148(1): 191–209.PubMedCrossRefGoogle Scholar
  31. Sekino, M., Inoue, Y. and Ueno, S. Magnetic resonance imaging of mean values and anisotropy of electrical conductivity in the human brain. Neurol. Clin. Neurophysiol. 2004, 2004: 55.Google Scholar
  32. Stinstra, J.G. and Peters, M.J. The volume conductor may act as a temporal filter on the ECG and EEG. Med. Biol. Eng. Comput. 1998, 36: 711–716.PubMedCrossRefGoogle Scholar
  33. Stock, C.J. The inverse problem in EEG and MEG with application to visual evoked responses. Thesis, 1986.Google Scholar
  34. Tuch, D.S., Wedeen, V.J., Dale, A.M., George, J.S. and Belliveau, J.W. Conductivity tensor mapping of the human brain using diffusion tensor MRI. Proc. Natl. Acad. Sci. U.S.A. 2001, 98(20), 11697–11701.Google Scholar
  35. van den Broek, S.P., Reiders, F., Donderwinkel, M. and Peters, M.J. Volume conduction effects in EEG and MEG. Electroencephalogr. Clin. Neurophysiol. 1998, 106.Google Scholar
  36. Van Uitert, R., Johnson, C. and Zhukov, L. Influence of head tissue conductivity in forward and inverse magnetoencephalographic simulations using realistic head models. IEEE Trans. Biomed. Eng. 2004, 51(12): 2129–2137.PubMedCrossRefGoogle Scholar
  37. Vatta, F., Bruno, P. and Inchingolo, P. Improving lesion conductivity estimate by means of EEG source localization sensitivity to model parameter. J. Clin. Neurophysiol. 2002, 19(1): 1–15.PubMedCrossRefGoogle Scholar
  38. Wen, P. and Li, Y. Comaprison study of different head model structures with homogeneous/inhomogeneous conductivity. Aust. Phys. Eng. Sci. Med. 2001, 24(1): 31–36.CrossRefGoogle Scholar

Copyright information

© Springer Science + Business Media, Inc. 2006

Authors and Affiliations

  • M. Akhtari
    • 1
    • 2
    Email author
  • N. Salamon
    • 3
  • R. Duncan
    • 2
  • I. Fried
    • 4
  • G. W. Mathern
    • 4
    • 5
  1. 1.Brain Mapping Division, Neuropsychiatric Institutes, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  2. 2.Department of Physics and AstronomyThe University of New MexicoAlbuquerqueUSA
  3. 3.Department of Radiology, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  4. 4.Division of Neurosurgery, David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA
  5. 5.The Mental Retardation Research Center, and The Brain Research Institute David Geffen School of MedicineUniversity of CaliforniaLos AngelesUSA

Personalised recommendations