Skip to main content

Advertisement

Log in

The Mechanism of Involuntary Visual Spatial Attention Revealed by a New Linear Computation Model

  • Published:
Brain Topography Aims and scope Submit manuscript

Summary

EEG reveals brain electrical activities with high temporal resolution. Yet, multiple implicit variables may be involved in limited event related potential (ERP) measures. Special computation techniques are needed to recover these parameters. In the study of involuntary visual spatial attention, we may obtain the ERP in valid cued (V), invalid cued (I) and neutral cued (N) conditions. Usually, the effect of involuntary attention is computed by the subtraction model with the assumption that V/I and N are independent. Yet, they should be related. Treating V/I as a function of N, a linear model V(I) = W + GN is assumed, where W and G are implicit in the ERP measures. G is the gain control on the neutral function. Provided G and W are constant over a local brain region, we may use the Total Least Square (TLS) algorithm to compute their values. The values of W and G computed from an involuntary attention experiment data show that multiple implicit variables are involved in obtained ERPs. Here G acts as a “top-down” sensory modulator on the neutral ERPs and W is related to possible newly involved neural activities. The parameters derived from the new linear model also suggest that there are different mechanisms involved in involuntary attention and voluntary allocation of attention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anllo-Vento, L. and Hillyard, S.A. Selective attention to the color and direction of moving stimuli: electrophysiological correlates of hierarchical feature selection. Percept. Psychophys., 1996, 58: 191–206.

    Google Scholar 

  • Bennett, I.J., Golob, E.J. and Starr, A. Age-related differences in auditory event-related potentials during a cued attention task. Clin. Neurophysiol., 115 (2004): 2602–2615

    Article  PubMed  Google Scholar 

  • Brandt, M. Thinking nonlinearly about brain dynamics: a neurocommentary. In: Proceedings of the IEEE 2nd International Symposium on Bioinformatics and Bioengineering Conference, 2001: 112–118.

  • Briand, K.A. and Klein, R.M. Is Posner's `beam' the same as Treisman's `glue'? On the relation between visual orienting and feature integration theory. J. Exp. Psychol Hum. Percept. Perform., 1987, 13: 228–241.

    Article  PubMed  CAS  Google Scholar 

  • Doallo, S., Lorenzo-Lopez, L., Vizoso, C., Holguin, S.R., Amenedo, E., Bara, S. and Cadaveira, F. Modulations of the visual N1 component of event-related potentials by central and peripheral cueing. Clin. Neurophysiol., 2005, 116: 807–820.

    Article  PubMed  CAS  Google Scholar 

  • Eimer, M. An ERP study on visual spatial priming with peripheral onsets. Psychophysiol., 1994, 31: 154–163.

    Article  CAS  Google Scholar 

  • Fu, S.M., Fan, S.L., Chen, L. and Zhuo, Y. The attentional effects of peripheral cueing as revealed by two event-related potential studies. Clin. Neurophysiol. 2001, 112: 172–185.

    Google Scholar 

  • Golob, E.J., Pratt, H. and Starr, A. Preparatory slow potentials and event-related potentials in an auditory cued attention task. Clin. Neurophysiol., 2002, 113: 1544–1557.

    Article  PubMed  CAS  Google Scholar 

  • Harmony, T., Bernal, J., Fernandez, T., Pereyra, J.S. et al. Primary task demands modulate P3a amplitude. Cognitive Brain Res., 2000, 9: 53–60.

    Article  CAS  Google Scholar 

  • Harter, M.R., Aine, C. and Schroeder, C. Hemispheric differences in the neural processing of stimulus location and type: effects of selective attention on visual evoked potentials. Neuropsychologia, 1982, 20: 421–438.

    Article  PubMed  CAS  Google Scholar 

  • Herrmann, C.S. and Knight, R.T. Mechanisms of human attention: event-related potentials and oscillations. Neurosci Biobehavioral. Rev., 2001, 25: 465–476.

    Article  CAS  Google Scholar 

  • Hillyard, S.A. and Muente, T.F. Selective attention to color and location: an analysis with event-related brain potentials. Percept. Psychophys., 1984, 36: 185–198.

    PubMed  CAS  Google Scholar 

  • Hillyard, S.A. and Mangun, G.R. Sensory gating as a physiological mechanism for visual selective attention. In: H.J. Heinze, T.F. Muente and G.R. Mangun (Eds.), Current Trends in Event-Related Potential Research, 1987:61–67 Amsterdam, Elsevier.

  • Hillyard, S.A., Luck, S.J. and Mangun, G.R. The cuing of attention to visual field locations: Analysis with ERP recording. In: H.J. Heinze, T.F. Muente and G.R. Mangun (Eds.), Cognitive Electro-Physiology: Event-Related Brain Potentials in Basic and Clinical Research, 1994, Birkhauser, Boston.

  • Hillyard, S.A. and Anllo-Vento, L. Event-related brain potentials in the study of visual selective attention. Proc. Natl. Acd., Sci. U.S.A., 1998, 95: 781–787.

    Article  CAS  Google Scholar 

  • Jonides, J. Voluntary versus automatic control over the mind's eye's movement. In: J.B. Long and A.D. addeley (Eds.), Attention and Performance IX. 1981: 187–203. Lawrence Erlbaum Associates, Hillsdale, NJ.

  • Lubbe, R.H.J. and Woestenburg, J.C. Modulation of early ERP components with peripheral precues: a trend analysis. Biol. Psychol., 1997, 45: 143–158.

    Article  PubMed  Google Scholar 

  • Luck, S.J., Hillyard, S.A., Mouloua, M., Woldorff, M.G., Clark, V.P. and Hawkins, H.L. Effects of spatial cuing on luminance detectability: psychophysical and electrophysiological evidence for early selection. J. Exp. Psychol. Hum. Percept. Perform., 1994, 20: 887–904.

    Article  PubMed  CAS  Google Scholar 

  • Luck, S.J. Multiple mechanisms of visual-spatial attention: recent evidence from human electrophysiology. Behav. Brain. Res., 1995, 71: 113–123.

    Article  PubMed  CAS  Google Scholar 

  • Mangun, G.R., Hansen, J.C. and Hillyard, S.A. The spatial orienting of attention: sensory facilitation or response bias? In: R. Johnson, J.W. Rohrbaugh and R. Parasuraman (Eds.), Current Trends in Event-Related Potential Research, Amsterdam, Elsevier, 1987: 118–124.

  • Mangun, G.R. and Hillyard, S.A. Spatial gradients of visual attention: behavioral and electrophysiological evidence. Electroenceph. Clin. Neurophysiol., 1988, 70: 417–428.

    Article  CAS  Google Scholar 

  • Mangun, G.R. and Hillyard, S.A. Modulations of sensory-evoked brain potentials indicate changes in perceptual processing during visual–spatial priming. J. Exp. Psychol. Hum. Percept. Perform., 1991, 17: 1057–1074.

    Article  PubMed  CAS  Google Scholar 

  • Mangun, G.R., Hillyard, S.A. and Luck, S.J. Electrocortical substrates of visual selective attention. In: D. Meyer and S. Kornblum (Eds.), Attention and performance XIV, 1993: 219–243. MIT Press, Cambridge, MA.

  • Müller, H.J. and Rabbitt, P.M.A. Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. J. Exp. Psychol. Hum. Percept. Perform., 1989, 15: 315–330.

    Article  PubMed  Google Scholar 

  • Naatanen, R. and Michie, P.T. Early selective-attention effects on the evoked potential: A critical review and reinterpretation. Biol. Psychol., 1979, 8: 81–126.

    Article  PubMed  CAS  Google Scholar 

  • Naatanen, R. The role of attention in auditory information processing as revealed by event-related potentials and other brain measures of cognitive function. Behav. Brain. Sci., 1990, 13: 201–288.

    Google Scholar 

  • Neville, H.J. and Lawson, D. Attention to central and peripheral visual space in a movement detection task: an event-related potential and behavioral study. I. Normal hearing adults. Brain. Res. 1987, 405: 253–267.

    Google Scholar 

  • Posner, M.I., Nissen, M.K. and Ogden, W.C. Attended and unattended processing modes: the role of set for spatial location. In: H.L. Pick and E. Saltzman (Eds.), Modes of Perceiving and Processing Information. 1978: 137–157. Lawrence Erlbaum Associates, Hillsdale, NJ.

  • Posner, M.I. Orienting of attention. Q. J. Exp. Psychol., 1980, 32: 3–25.

    Article  PubMed  CAS  Google Scholar 

  • Thiel, C.M., Zilles, K. and Fink, G.R. Cerebral correlates of alerting, orienting and reorienting of visuospatial attention: an event-related fMRI study. NeuroImage., 2004, 21: 318–328.

    Article  PubMed  Google Scholar 

  • Van Voorhis, S. and Hillyard, S.A. Visual evoked potentials and selective attention to points in space. Percept. Psychophys., 1977, 22: 54–62.

    Google Scholar 

  • Wang, J., Jin, Y., Xiao, F., Fan, S. and Chen, L. Attention-sensitive visual eventrelated potentials elicited by kinetic forms. Clin. Neurophysiol., 1999, 110: 329–341.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, S., Tsuchiva, H. and Kobayashi, S. Electroencephalographic activity associated with shifts of visuospatial attention. Brain., 1994, 117: 553–562.

    Article  PubMed  Google Scholar 

  • Yao, D.Z. Computation for the implicit components of ERP in Attention. Brain. Topography., 2003, 16: 65–70.

    Article  PubMed  Google Scholar 

  • Zani, A. and Proverbio, A.M. ERP signs of early selective attention effects to check size. Electroenceph Clin. Neurophysiol., 1995, 95: 277–292.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dezhong Yao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qiu, L., Yao, D., Fu, S. et al. The Mechanism of Involuntary Visual Spatial Attention Revealed by a New Linear Computation Model. Brain Topogr 18, 249–256 (2006). https://doi.org/10.1007/s10548-006-0003-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10548-006-0003-0

Keywords

Navigation