Skip to main content
Log in

Eddy Scale-wise Topology Underlying Turbulence Anisotropy Illuminates the Dissimilar Transport of Momentum, Heat, and Moisture in a Stably Stratified Katabatic Flow

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

The backdrop for this study is a knowledge gap about how turbulence anisotropy relates to the dissimilar transport of momentum and scalars. We use single-level measurements of turbulence over an alpine glacier for exploring the dissimilar transport of momentum, heat, and moisture in stably stratified katabatic flows. Our study is motivated by the need of addressing their flux dissimilarity from a fresh perspective of anisotropic motions of turbulence. Its objective is to promote new understanding of boundary-layer turbulence anisotropy as one possible factor in dissimilar behaviours between momentum and scalar transport over a sloping terrain. Specifically, the momentum–heat flux correlation (\({R}_{{F}_{uT}}\)) and the heat–moisture flux correlation (\({R}_{{F}_{Tq}}\)) coefficients vary across three different bulk states of kinetic anisotropy. Those states, identified using the barycentric Lumley map, suggest the predominance of two-component turbulence (being axisymmetric or not) and miscellaneous turbulence (whose topological shape is less salient). Miscellaneous turbulence typically bears a higher degree of the flux similarity between momentum and heat (i.e., \({R}_{{F}_{uT}}\) > 0.6) but a lower degree of that between heat and moisture (i.e., \(\left|{R}_{{F}_{Tq}}\right|\) < 0.7). The multi-resolution decomposition technique is then applied to identify larger-scale eddies of two-component topology, intermediate-scale eddies of oblate topology, and smaller-scale eddies of isotropic topology. Further analysis shows that an explicit change in eddy scale-wise topology is correlated not only with variations in \({R}_{{F}_{uT}}\) and \(\left|{R}_{{F}_{Tq}}\right|\) but with the dissimilar transport of momentum and scalars, so explaining a deviation from the Reynolds and the Lewis analogies in fluid mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

{i} Field photographs: https://doi.org/10.6084/m9.figshare.7504205. {ii} Available data: https://doi.org/10.6084/m9.figshare.24515095.

References

  • Ayet A, Katul GG, Bragg AD, Redelsperger JL (2020) Scalewise return to isotropy in stratified boundary layer flows. J Geophys Res Atmos 125:e2020jd032732. https://doi.org/10.1029/2020jd032732

    Article  Google Scholar 

  • Babić N, Večenaj Ž, De Wekker SFJ (2017) Spectral gap characteristics in a daytime valley boundary layer. Q J R Meteorol Soc 143:2509–2523

    Article  Google Scholar 

  • Banerjee S, Krahl R, Durst F, Zenger Ch (2007) Presentation of anisotropy properties of turbulence, invariants versus eigenvalue approaches. J Turb 8:N32. https://doi.org/10.1080/14685240701506896

    Article  Google Scholar 

  • Brugger P, Katul GG, De Roo F, Kröniger K, Rotenberg E, Rohatyn S, Mauder M (2018) Scalewise invariant analysis of the anisotropic Reynolds stress tensor for atmospheric surface layer and canopy sublayer turbulent flows. Phys Rev Fluids 3:054608. https://doi.org/10.1103/physrevfluids.3.054608

    Article  Google Scholar 

  • Brun C (2017) Large-eddy simulation of a katabatic jet along a convexly curved slope: 2. Evidence of Görtler vortices. J Geophys Res Atmos 122:5190–5210

    Article  Google Scholar 

  • Charrondière C, Brun C, Sicart J-E, Cohard J-M, Biron R, Blein S (2020) Buoyancy effects in the turbulence kinetic energy budget and Reynolds stress budget for a katabatic jet over a steep alpine slope. Boundary-Layer Meteorol 177:97–122

    Article  Google Scholar 

  • Choi K-S, Lumley JL (2001) The return to isotropy of homogeneous turbulence. J Fluid Mech 436:59–84

    Article  CAS  Google Scholar 

  • Chowdhuri S, Prabha TV (2019) An evaluation of the dissimilarity in heat and momentum transport through quadrant analysis for an unstable atmospheric surface layer flow. Environ Fluid Mech 19:513–542

    Article  CAS  Google Scholar 

  • Ding B, Yang K, Yang W, He X, Chen Y, Lazhu, Guo X, Wang L, Wu H, Yao T (2017) Development of a Water and Enthalpy Budget-based Glacier mass balance Model (WEB-GM) and its preliminary validation. Water Resour Res 53:3146–3178

    Article  Google Scholar 

  • Dupont S, Patton EG (2012) Influence of stability and seasonal canopy changes on micrometeorology within and above an orchard canopy: the CHATS experiment. Agric for Meteorol 157:11–29

    Article  Google Scholar 

  • Dupont S, Rajot J-L, Labiadh M, Bergametti G, Lamaud E, Irvine MR, Alfaro SC, Bouet C, Fernandes R, Khalfallah B, Marticorena B, Bonnefond JM, Chevaillier S, Garrigou D, Henry-des-Tureaux T, Sekrafi S, Zapf P (2019) Dissimilarity between dust, heat, and momentum turbulent transports during aeolian soil erosion. J Geophys Res Atmos 124:1064–1089

    Article  Google Scholar 

  • Durbin PA, Speziale CG (1991) Local anisotropy in strained turbulence at high Reynolds numbers. J Fluids Eng 113:707–709

    Article  CAS  Google Scholar 

  • Falocchi M, Giovannini L, de Franceschi M, Zardi D (2019) A method to determine the characteristic time-scales of quasi-isotropic surface-layer turbulence over complex terrain: a case-study in the Adige Valley. Q J R Meteorol Soc 145:495–512

    Article  Google Scholar 

  • Grachev AA, Leo LS, Di Sabatino S, Fernando HJS, Pardyjak ER, Fairall CW (2016) Structure of turbulence in katabatic flows below and above the wind-speed maximum. Boundary-Layer Meteorol 159:469–494

    Article  Google Scholar 

  • Gucci F, Giovannini L, Stiperski I, Zardi D, Vercauteren N (2023) Sources of anisotropy in the Reynolds stress tensor in the stable boundary layer. Q J R Meteorol Soc 149:277–299

    Article  Google Scholar 

  • Guo X, Yang K, Zhao L, Yang W, Li S, Zhu M, Yao T, Chen Y (2011) Critical evaluation of scalar roughness length parametrizations over a melting valley glacier. Boundary-Layer Meteorol 139:307–332

    Article  Google Scholar 

  • Guo X, Yang W, Gao Z, Wang L, Hong J, Ding B, Zhao L, Zhou D, Yang K (2022) Katabatic flow structures indicative of the flux dissimilarity for stable stratification. Boundary-Layer Meteorol 182:379–415

    Article  Google Scholar 

  • Guo X, Yang W, Hong J, Wang L, Gao Z, Zhou D (2023) Turbulence behaviors underlying the sensible heat and water vapor flux dissimilarity in a stably stratified flow. Environ Fluid Mech 23:1193–1232

    Article  CAS  Google Scholar 

  • Hill RJ (1989) Implications of Monin-Obukhov similarity theory for scalar quantities. J Atmos Sci 46:2236–2244

    Article  Google Scholar 

  • Howell JF, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83:117–137

    Article  Google Scholar 

  • Kaimal JC, Wyngaard JC, Izumi Y, Coté OR (1972) Spectral characteristics of surface-layer turbulence. Q J R Meteorol Soc 98:563–589

    Google Scholar 

  • Katul G, Hsieh C-I, Kuhn G, Ellsworth D, Nie D (1997) Turbulent eddy motion at the forest-atmosphere interface. J Geophys Res Atmos 102:13409–13421

    Article  Google Scholar 

  • Klipp C (2014) Turbulence anisotropy in the near-surface atmosphere and the evaluation of multiple outer length scales. Boundary-Layer Meteorol 151:57–77

    Article  Google Scholar 

  • Kolmogorov AN (1991a) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc R Soc A-Math Phys Eng Sci 434:9–13. https://doi.org/10.1098/rspa.1991.0075

    Article  Google Scholar 

  • Kolmogorov AN (1991b) Dissipation of energy in the locally isotropic turbulence. Proc R Soc A-Math Phys Eng Sci 434:15–17. https://doi.org/10.1098/rspa.1991.0076

    Article  Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140:243–262

    Article  Google Scholar 

  • Li D, Katul GG, Bou-Zeid E (2012) Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Phys Fluids 24:105105. https://doi.org/10.1063/1.4757660

    Article  CAS  Google Scholar 

  • Litt M, Sicart J-E, Helgason W (2015) A study of turbulent fluxes and their measurement errors for different wind regimes over the tropical Zongo Glacier (16° S) during the dry season. Atmos Meas Tech 8:3229–3250

    Article  Google Scholar 

  • Liu H, Yuan R, Mei J, Sun J, Liu Q, Wang Y (2017) Scale properties of anisotropic and isotropic turbulence in the urban surface layer. Boundary-Layer Meteorol 165:277–294

    Article  Google Scholar 

  • Lumley JL (1979) Computational modeling of turbulent flows. Adv Appl Mech 18:123–176

    Article  Google Scholar 

  • Lumley JL, Newman GR (1977) The return to isotropy of homogeneous turbulence. J Fluid Mech 82:161–178

    Article  Google Scholar 

  • Mahrt L (2014) Stably stratified atmospheric boundary layers. Annu Rev Fluid Mech 46:23–45

    Article  Google Scholar 

  • Mahrt L, Richardson S, Seaman N, Stauffer D (2012) Turbulence in the nocturnal boundary layer with light and variable winds. Q J R Meteorol Soc 138:1430–1439

    Article  Google Scholar 

  • McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43:231–245

    Article  Google Scholar 

  • Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35

    Article  Google Scholar 

  • Nieuwstadt FTM (1984) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Article  Google Scholar 

  • Oldroyd HJ, Pardyjak ER, Huwald H, Parlange MB (2016) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Boundary-Layer Meteorol 159:539–565

    Article  Google Scholar 

  • Pettersson Reif BA, Andreassen Ø (2003) On local isotropy in stratified homogeneous turbulence. SIAM J Appl Math 64:309–321

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rotta JC (1953) Similarity theory of isotropic turbulence. J Aeronaut Sci 20:769–778,800. https://doi.org/10.2514/8.2833

    Article  Google Scholar 

  • Serafin S, Adler B, Cuxart J, De Wekker SFJ, Gohm A, Grisogono B, Kalthoff N, Kirshbaum DJ, Rotach MW, Schmidli J, Stiperski I, Večenaj Ž, Zardi D (2018) Exchange processes in the atmospheric boundary layer over mountainous terrain. Atmos 9:102. https://doi.org/10.3390/atmos9030102

    Article  CAS  Google Scholar 

  • Simonsen AJ, Krogstad P-Å (2005) Turbulent stress invariant analysis: clarification of existing terminology. Phys Fluids 17:088103. https://doi.org/10.1063/1.2009008

    Article  CAS  Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87:117–145

    Article  Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: pure katabatic forcing conditions. Boundary-Layer Meteorol 97:73–107

    Article  Google Scholar 

  • Smyth WD, Moum JN (2000) Anisotropy of turbulence in stably stratified mixing layers. Phys Fluids 12:1343–1362

    Article  CAS  Google Scholar 

  • Stiperski I, Calaf M (2018) Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q J R Meteorol Soc 144:641–657

    Article  Google Scholar 

  • Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Boundary-Layer Meteorol 159:97–121

    Article  Google Scholar 

  • Stiperski I, Calaf M, Rotach MW (2019) Scaling, anisotropy, and complexity in near-surface atmospheric turbulence. J Geophys Res Atmos 124:1428–1448

    Article  Google Scholar 

  • Stiperski I, Chamecki M, Calaf M (2021a) Anisotropy of unstably stratified near-surface turbulence. Boundary-Layer Meteorol 180:363–384

    Article  Google Scholar 

  • Stiperski I, Katul GG, Calaf M (2021b) Universal return to isotropy of inhomogeneous atmospheric boundary layer turbulence. Phys Rev Lett 126:194501. https://doi.org/10.1103/physrevlett.126.194501

    Article  CAS  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Suzuki H, Suzuki K, Sato T (1988) Dissimilarity between heat and momentum transfer in a turbulent boundary layer disturbed by a cylinder. Int J Heat Mass Transf 31:259–265

    Article  Google Scholar 

  • Thoroddsen ST, Van Atta CW (1992) The influence of stable stratification on small-scale anisotropy and dissipation in turbulence. J Geophys Res Oceans 97:3647–3658

    Article  Google Scholar 

  • Vassilicos JC (2015) Dissipation in turbulent flows. Annu Rev Fluid Mech 47:95–114

    Article  Google Scholar 

  • Vercauteren N, Boyko V, Faranda D, Stiperski I (2019) Scale interactions and anisotropy in stable boundary layers. Q J R Meteorol Soc 145:1799–1813

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20:660–672

    Article  Google Scholar 

  • Wallace JM (2016) Quadrant analysis in turbulence research: history and evolution. Annu Rev Fluid Mech 48:131–158

    Article  Google Scholar 

  • Wang L, Li D, Gao Z, Sun T, Guo X, Bou-Zeid E (2014) Turbulent transport of momentum and scalars above an urban canopy. Boundary-Layer Meteorol 150:485–511

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, Oxford

    Book  Google Scholar 

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Xu B-Q, Wang M, Joswiak DR, Cao J-J, Yao T-D, Wu G-J, Yang W, Zhao H-B (2009) Deposition of anthropogenic aerosols in a southeastern Tibetan glacier. J Geophys Res 114:D17209. https://doi.org/10.1029/2008jd011510

    Article  Google Scholar 

Download references

Acknowledgements

The idea of presenting a non-dimensional time scale was gratefully received from one of the three anonymous reviewers, all taking pains to help improve our article. Drs. Kun Yang (Tsinghua University) and Long Zhao (Southwest University) collaborated with X.G. and W.Y. on the glacier expedition.

Funding

The present study is completed under the auspices of the National Natural Science Foundation of China [Grant 42150205 (X.G. and D.Z.; Principal Investigator: X.G.)], the Second Tibetan Plateau Scientific Expedition and Research Program [Grants 2019QZKK0102 (X.G.) and 2019QZKK0103 (D.Z.)], and the Science and Technology Projects in the Tibet Autonomous Region [Grant XZ202301ZY0028G (W.Y.)].

Author information

Authors and Affiliations

Authors

Contributions

Wei Yang spearheaded the field experiment at Palong–Zangbu No. 4 glacier, and Xiaofeng Guo contributed to the maintenance of the instrument tower, as well as its data curation. It was incumbent upon Xiaofeng Guo to conceive and perform the present research, collect and analyze the data, and draft the original manuscript. Degang Zhou worked as a conscientious reviewer who provided a multitude of constructive comments on the entire manuscript. Wei Yang and Degang Zhou answered the corresponding author’s queries about necessary revisions to the manuscript.

Corresponding author

Correspondence to Xiaofeng Guo.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 2098 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, X., Yang, W. & Zhou, D. Eddy Scale-wise Topology Underlying Turbulence Anisotropy Illuminates the Dissimilar Transport of Momentum, Heat, and Moisture in a Stably Stratified Katabatic Flow. Boundary-Layer Meteorol 190, 27 (2024). https://doi.org/10.1007/s10546-024-00866-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10546-024-00866-w

Keywords

Navigation