Skip to main content
Log in

Effects of Wall Topology on Statistics of Cube-Roughened Wall Turbulence

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

In this work, we carried out roughness-resolved direct numerical simulations of cube-roughened turbulent channel flows to investigate the effects of aligned and staggered arrangements, element spacings, and element orientations on the statistics of rough-wall turbulence. The results show that the equivalent sandgrain roughness, Reynolds stresses and dispersive stresses are affected by element spacings and arrangements in different ways depending on the cube orientations. Placing the roughness elements in a staggered way in general increases the equivalent sandgrain roughness, unless when the element–element interaction is insignificant for the cube orientation with wakes of short length. As for the Reynolds normal stresses and the streamwise component of the dispersive stresses (both are normalized by the total friction velocity), placing the cube elements in a staggered way decreases their maximal values when compared with the aligned arrangements. As for the effects of element spacing on the equivalent sandgrain roughness and the maximums of the Reynolds normal stresses, similar trends are observed for different element orientations and arrangements when increasing the element spacing l/r (where r is the cube height) from 2.0 to 2.8. When further increasing the element spacing l/r from 2.8 to 3.5, however, different trends are observed for different element orientations. As for the dispersive stresses, greater maximal values of their streamwise components are observed for larger element spacing for all the considered cube-roughened surfaces. For the turbulence statistics in the wake of the cube element, certain similarities are observed for different element spacings.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21

Similar content being viewed by others

References

  • Ahn J, Lee JH, Sung HJ (2013) Statistics of the turbulent boundary layers over 3d cube-roughened walls. Int J Heat Fluid Flow 44:394–402

    Article  Google Scholar 

  • Amir M, Castro IP (2011) Turbulence in rough-wall boundary layers: universality issues. Exp Fluids 51(2):313–326

    Article  Google Scholar 

  • Anderson W (2016) Amplitude modulation of streamwise velocity fluctuations in the roughness sublayer: evidence from large-eddy simulations. J Fluid Mech 789:567–588

    Article  Google Scholar 

  • Basley J, Perret L, Mathis R (2018) Spatial modulations of kinetic energy in the roughness sublayer. J Fluid Mech 850:584–610

    Article  Google Scholar 

  • Basley J, Perret L, Mathis R (2019) Structure of high reynolds number boundary layers over cube canopies. J Fluid Mech 870:460–491

    Article  Google Scholar 

  • Blackman K, Perret L (2016) Non-linear interactions in a boundary layer developing over an array of cubes using stochastic estimation. Phys Fluids 28(9):095,108

    Article  Google Scholar 

  • Calderer A, Yang X, Angelidis D, Khosronejad A, Le T, Kang S, Gilmanov A, Ge L, Borazjani I (2015) Virtual flow simulator. University of Minnesota, Tech rep

  • Castro IP, Cheng H, Reynolds R (2006) Turbulence over urban-type roughness: deductions from wind-tunnel measurements. Bound-Layer Meteorol 118(1):109–131

    Article  Google Scholar 

  • Chan L, MacDonald M, Chung D, Hutchins N, Ooi A (2015) A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime. J Fluid Mech 771:743–777

    Article  Google Scholar 

  • Chatzikyriakou D, Buongiorno J, Caviezel D, Lakehal D (2015) Dns and les of turbulent flow in a closed channel featuring a pattern of hemispherical roughness elements. Int J Heat Fluid Flow 53:29–43

    Article  Google Scholar 

  • Cheng H, Hayden P, Robins A, Castro I (2007) Flow over cube arrays of different packing densities. J Wind Eng Ind Aerodyn 95(8):715–740

    Article  Google Scholar 

  • Choi YK, Hwang HG, Lee YM, Lee JH (2020) Effects of the roughness height in turbulent boundary layers over rod-and cuboid-roughened walls. Int J Heat Fluid Flow 85(108):644

    Google Scholar 

  • Chung D, Chan L, MacDonald M, Hutchins N, Ooi A (2015) A fast direct numerical simulation method for characterising hydraulic roughness. J Fluid Mech 773:418–431

    Article  Google Scholar 

  • Chung D, Hutchins N, Schultz MP, Flack KA (2021) Predicting the drag of rough surfaces. Annu Rev Fluid Mech 53:439–471

    Article  Google Scholar 

  • Coceal O, Dobre A, Thomas T, Belcher S (2007) Structure of turbulent flow over regular arrays of cubical roughness. J Fluid Mech 589:375–409

    Article  Google Scholar 

  • Colebrook CF (1939) Turbulent flow in pipes, with particular reference to the transition region between the smooth and rough pipe laws. J Inst Civ Eng 11(4):133–156. https://doi.org/10.1680/ijoti.1939.13150

    Article  Google Scholar 

  • Djenidi L, Antonia R, Anselmet F (1994) Lda measurements in a turbulent boundary layer over a d-type rough wall. Exp Fluids 16(5):323–329

    Article  Google Scholar 

  • Ferreira M, Ganapathisubramani B (2021) Scale interactions in velocity and pressure within a turbulent boundary layer developing over a staggered-cube array. J Fluid Mech. https://doi.org/10.1017/jfm.2020.999

    Article  Google Scholar 

  • Flack KA, Schultz MP (2010) Review of hydraulic roughness scales in the fully rough regime. J Fluids Eng 132(4):041203

    Article  Google Scholar 

  • Forooghi P, Stroh A, Magagnato F, Jakirlić S, Frohnapfel B (2017) Toward a universal roughness correlation. J Fluids Eng 139(12):121201

    Article  Google Scholar 

  • Ge L, Sotiropoulos F (2007) A numerical method for solving the 3D unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries. J Comput Phys 225(2):1782–1809

    Article  Google Scholar 

  • Giometto M, Christen A, Meneveau C, Fang J, Krafczyk M, Parlange M (2016) Spatial characteristics of roughness sublayer mean flow and turbulence over a realistic urban surface. Boundary-Layer Meteorol 160(3):425–452

    Article  Google Scholar 

  • Hamed A, Sadowski M, Nepf H, Chamorro L (2017) Impact of height heterogeneity on canopy turbulence. J Fluid Mech 813:1176–1196

    Article  Google Scholar 

  • Inagaki A, Kanda M (2008) Turbulent flow similarity over an array of cubes in near-neutrally stratified atmospheric flow. J Fluid Mech 615:101–120

    Article  Google Scholar 

  • Inagaki A, Kanda M (2010) Organized structure of active turbulence over an array of cubes within the logarithmic layer of atmospheric flow. Boundary-Layer Meteorol 135(2):209–228

    Article  Google Scholar 

  • Jia Y, Sill B, Reinhold T (1998) Effects of surface roughness element spacing on boundary-layer velocity profile parameters. J Wind Eng Ind Aerodyn 73(3):215–230

    Article  Google Scholar 

  • Jiménez J (2004) Turbulent flows over rough walls. Annu Rev Fluid Mech 36:173–196

    Article  Google Scholar 

  • Jiménez J, Moin P (1991) The minimal flow unit in near-wall turbulence. J Fluid Mech 225:213–240

    Article  Google Scholar 

  • Jouybari MA, Yuan J, Brereton GJ, Murillo MS (2021) Data-driven prediction of the equivalent sand-grain height in rough-wall turbulent flows. J Fluid Mech. https://doi.org/10.1017/jfm.2020.1085

    Article  Google Scholar 

  • Kanda M (2006) Large-eddy simulations on the effects of surface geometry of building arrays on turbulent organized structures. Boundary-Layer Meteorol 118(1):151–168

    Article  Google Scholar 

  • Kanda M, Moriwaki R, Kasamatsu F (2004) Large-eddy simulation of turbulent organized structures within and above explicitly resolved cube arrays. Boundary-Layer Meteorol 112(2):343–368

    Article  Google Scholar 

  • Lee JH, Sung HJ, Krogstad PÅ (2011) Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall. J Fluid Mech 669:397–431

    Article  Google Scholar 

  • Lee JH, Seena A, Lee S, Sung HJ (2012) Turbulent boundary layers over rod-and cube-roughened walls. J Turbul 13(1):N40

    Article  Google Scholar 

  • Leonardi S, Castro IP (2010) Channel flow over large cube roughness: a direct numerical simulation study. J Fluid Mech 651:519–539

    Article  Google Scholar 

  • Lettau H (1969) Note on aerodynamic roughness-parameter estimation on the basis of roughness-element description. J Appl Meteorol Climatol 8(5):828–832. https://doi.org/10.1175/1520-0450(1969)008<0828:NOARPE>2.0.CO;2

    Article  Google Scholar 

  • Li S, Yang X, Jin G, He G (2021) Wall-resolved large-eddy simulation of turbulent channel flows with rough walls. Theor Appl Mech Lett 11(1):100,228. https://doi.org/10.1016/j.taml.2021.A006

    Article  Google Scholar 

  • Li Z, Yang X (2021) Large-eddy simulation on the similarity between wakes of wind turbines with different yaw angles. J Fluid Mech 921:A11. https://doi.org/10.1017/jfm.2021.495

    Article  Google Scholar 

  • Ma GZ, Xu CX, Sung HJ, Huang WX (2020) Scaling of rough-wall turbulence by the roughness height and steepness. J Fluid Mech. https://doi.org/10.1017/jfm.2020.542

    Article  Google Scholar 

  • Ma R, Alamé K, Mahesh K (2021) Direct numerical simulation of turbulent channel flow over random rough surfaces. J Fluid Mech. https://doi.org/10.1017/jfm.2020.874

    Article  Google Scholar 

  • MacDonald M, Chung D, Hutchins N, Chan L, Ooi A, García-Mayoral R (2017) The minimal-span channel for rough-wall turbulent flows. J Fluid Mech 816:5–42

    Article  Google Scholar 

  • Macdonald R, Griffiths R, Hall D (1998) An improved method for the estimation of surface roughness of obstacle arrays. Atmos Environ 32(11):1857–1864

    Article  Google Scholar 

  • Macdonald R, Carter Schofield S, Slawson P (2002) Physical modelling of urban roughness using arrays of regular roughness elements. Water Air Soil Pollut Focus 2(5):541–554

    Article  Google Scholar 

  • Mejia-Alvarez R, Christensen K (2010) Low-order representations of irregular surface roughness and their impact on a turbulent boundary layer. Phys Fluids 22(1):015,106

    Article  Google Scholar 

  • Mignot E, Barthélemy E, Hurther D (2009) Double-averaging analysis and local flow characterization of near-bed turbulence in gravel-bed channel flows. J Fluid Mech 618:279–303

    Article  Google Scholar 

  • Millward-Hopkins J, Tomlin A, Ma L, Ingham D, Pourkashanian M (2011) Estimating aerodynamic parameters of urban-like surfaces with heterogeneous building heights. Boundary-Layer Meteorol 141(3):443–465

    Article  Google Scholar 

  • Modesti D, Endrikat S, Hutchins N, Chung D (2021) Dispersive stresses in turbulent flow over riblets. J Fluid Mech. https://doi.org/10.1017/jfm.2021.310

    Article  Google Scholar 

  • Moody LF (1944) Friction factors for pipe flow. Trans Asme 66:671–684

    Google Scholar 

  • Nikuradse J (1950) Laws of flow in rough pipes. National Advisory Committee for Aeronautics Washington NACA Technical Memorandum 1292

  • Oke TR (1988) Street design and urban canopy layer climate. Energy Build 11(1–3):103–113

    Article  Google Scholar 

  • Orlandi P, Leonardi S (2006) Dns of turbulent channel flows with two-and three-dimensional roughness. J Turbul 7:N73

    Article  Google Scholar 

  • Perret L, Kerhervé F (2019) Identification of very large scale structures in the boundary layer over large roughness elements. Exp Fluids 60(6):1–16

    Article  Google Scholar 

  • Placidi M, Ganapathisubramani B (2015) Effects of frontal and plan solidities on aerodynamic parameters and the roughness sublayer in turbulent boundary layers. J Fluid Mech 782:541–566

    Article  Google Scholar 

  • Placidi M, Ganapathisubramani B (2018) Turbulent flow over large roughness elements: effect of frontal and plan solidity on turbulence statistics and structure. Boundary-Layer Meteorol 167(1):99–121

    Article  Google Scholar 

  • Qin J, Li Z et al (2022) Hybrid diffuse and sharp interface immersed boundary methods for particulate flows in the presence of complex boundaries. Commun Comput Phys 31(4):1242–1271

    Article  Google Scholar 

  • Raupach MR, Shaw R (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22(1):79–90

    Article  Google Scholar 

  • Roth M, Inagaki A, Sugawara H, Kanda M (2015) Small-scale spatial variability of turbulence statistics,(co) spectra and turbulent kinetic energy measured over a regular array of cube roughness. Environ Fluid Mech 15(2):329–348

    Article  Google Scholar 

  • Sadique J, Yang XI, Meneveau C, Mittal R (2017) Aerodynamic properties of rough surfaces with high aspect-ratio roughness elements: effect of aspect ratio and arrangements. Boundary-Layer Meteorol 163(2):203–224

    Article  Google Scholar 

  • Sezen S, Uzun D, Turan O, Atlar M (2021) Influence of roughness on propeller performance with a view to mitigating tip vortex cavitation. Ocean Eng 239(109):703

    Google Scholar 

  • Volino RJ, Schultz MP, Flack KA (2011) Turbulence structure in boundary layers over periodic two-and three-dimensional roughness. J Fluid Mech 676:172–190

    Article  Google Scholar 

  • Wooding R, Bradley EF, Marshall J (1973) Drag due to regular arrays of roughness elements of varying geometry. Boundary-Layer Meteorol 5(3):285–308

    Article  Google Scholar 

  • Xu HH, Altland SJ, Yang XI, Kunz RF (2021) Flow over closely packed cubical roughness. J Fluid Mech. https://doi.org/10.1017/jfm.2021.456

    Article  Google Scholar 

  • Yang X, Angelidis D, Khosronejad A, Le T, Kang S, Gilmanov A, Ge L, Borazjani I, Calderer A (2015) Virtual flow simulator. Comput Softw. https://doi.org/10.11578/dc.20171025.1758

    Article  Google Scholar 

  • Yang X, Sotiropoulos F, Conzemius RJ, Wachtler JN, Strong MB (2015) Large-eddy simulation of turbulent flow past wind turbines/farms: the virtual wind simulator (VWiS). Wind Energy 18(12):2025–2045

    Article  Google Scholar 

  • Yang X, Xu H, Huang X, Ge MW (2019) Drag forces on sparsely packed cube arrays. J Fluid Mech 880:992–1019

    Article  Google Scholar 

  • Yang XI (2016) On the mean flow behaviour in the presence of regional-scale surface roughness heterogeneity. Boundary-Layer Meteorol 161(1):127–143

    Article  Google Scholar 

  • Yang XI, Sadique J, Mittal R, Meneveau C (2016) Exponential roughness layer and analytical model for turbulent boundary layer flow over rectangular-prism roughness elements. J Fluid Mech 789:127–165

    Article  Google Scholar 

  • Yuan J, Jouybari MA (2018) Topographical effects of roughness on turbulence statistics in roughness sublayer. Phys Rev Fluids 3(11):114,603

    Article  Google Scholar 

  • Yuan J, Piomelli U (2014) Numerical simulations of sink-flow boundary layers over rough surfaces. Phys Fluids 26(1):015,113

    Article  Google Scholar 

  • Yuan J, Piomelli U (2014) Roughness effects on the reynolds stress budgets in near-wall turbulence. J Fluid Mech. https://doi.org/10.1017/jfm.2014.608

    Article  Google Scholar 

  • Zhou Z, Wu T, Yang X (2021) Reynolds number effect on statistics of turbulent flows over periodic hills. Phys Fluids 33(10):105,124

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Numerical Wind Tunnel project (NNW2021ZT1-B34), NSFC Basic Science Center Program for “Multiscale Problems in Nonlinear Mechanics” (No. 11988102), the National Natural Science Foundation of China (No. 12172360), Institute of Mechanics CAS, and Chinese Academy of Sciences.

Author information

Authors and Affiliations

Authors

Contributions

XY, SL and ZZ made contributions to the concept. SL and XY made contributions to the simulation code. SL, ZZ and DC prepared and carried out the simulations. SL prepared figures. SL and XY wrote the original draft. SL, XY, XY and QG edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xiaolei Yang.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, S., Zhou, Z., Chen, D. et al. Effects of Wall Topology on Statistics of Cube-Roughened Wall Turbulence. Boundary-Layer Meteorol 186, 305–336 (2023). https://doi.org/10.1007/s10546-022-00760-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-022-00760-3

Keywords

Navigation