Skip to main content

Advertisement

Log in

A Review of Coastal Fog Microphysics During C-FOG

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Our goal is to provide an overview of the microphysical measurements made during the C-FOG (Toward Improving Coastal Fog Prediction) field project. In addition, we evaluate microphysical parametrizations using the C-FOG dataset. The C-FOG project is designed to advance understanding of liquid fog formation, particularly its development and dissipation in coastal environments, so as to improve fog predictability and monitoring. The project took place along eastern Canada’s (Nova Scotia and Newfoundland) coastlines and open water environments from August−October 2018, where environmental conditions play an important role for late-season fog formation. Visibility, wind speed, and atmospheric turbulence along coastlines are the most critical weather-related factors affecting marine transportation and aviation. In the analysis, microphysical observations are summarized first and then, together with three-dimensional wind components, used for fog intensity (visibility) evaluation. Results suggest that detailed microphysical observations collected at the supersites and aboard the Research Vessel Hugh R. Sharp are useful for developing microphysical parametrizations. The fog life cycle and turbulence-kinetic-energy dissipation rate are strongly related to each other. The magnitudes of three-dimensional wind fluctuations are higher during the formation and dissipation stages. An array of cutting-edge instruments used for data collection provides new insight into the variability and intensity of fog (visibility) and microphysics. It is concluded that further modifications in microphysical observations and parametrizations are needed to improve fog predictability of numerical-weather-prediction models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

adapted from Beswick et al. 2014)

Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Abdul-Razzak H, Ghan S (2000) A parametrization of aerosol activation: 2. Multiple aerosol type. J Geophys Res 105:6837–6844

    Google Scholar 

  • Benjamin SG, Jamison BD, Moninger WR, Sahm SR, Schwartz BE, Schlatter TW (2010) Relative short-range forecast impact from aircraft, profiler, radiosonde, VAD, GPS-PW, METAR, and mesonet observations via the RUC hourly assimilation cycle. Mon Wea Rev 138:1319–1343

    Google Scholar 

  • Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Prog Oceanogr 1:73–202

    Google Scholar 

  • Bergot TD, Noilhan CJ, Bougeault P (2005) Improved site-specific numerical prediction of fog and low clouds: a feasibility study. Wea Forecast 20:627–646

    Google Scholar 

  • Beswick K, Baumgardner D, Gallagher M, Thomas AV, Nedelec P, Wang KY, Lance S (2014) The backscatter cloud probe—a compact low-profile autonomous optical spectrometer. Atmos Meas Tech 7:1443–1457

    Google Scholar 

  • Bott A, Sievers U, Zdunkowski W (1990) A radiation fog model with a detailed treatment of the interaction between radiative transfer and fog microphysics. J Atmos Sci 47:2153–2166

    Google Scholar 

  • Bott A, Trautmann T (2002) PAFOG—a new efficient forecast model of radiation fog and low-level stratiform clouds. Atmos Res 64:191–203

    Google Scholar 

  • Burrows WR, Toth G (2011) Automated fog and stratus forecasts from the Canadian RDPS operational NWP model. Extended Abstracts. In: 24th Conference on Weather and Forecasting, 23–27 January, 2011, Seattle, WA, USA, 33pp, Amer. Meteorol. Soc. https://doi.org/10.13140/2.1.4852.0648

  • Castelli ST, Ferrero E, Anfossi D, Ohba R (2005) Turbulence closure models and their application in RAMS. Environ Fluid Mech 5:169–192

    Google Scholar 

  • Chen JP (1994) Theory of deliquescence and modified kohler curves. J Atmos Sci 51:3505–3516

    Google Scholar 

  • Clark TL (1973) Numerical modeling of the dynamics and microphysics of warm cumulus convection. J Atmos Sci 30:857–878

    Google Scholar 

  • Claxton BM (2008) using a neural network to benchmark a diagnostic parametrization: the Met Office’s visibility scheme. Q J R Meteorol Soc 134:1527–1537

    Google Scholar 

  • Cohard JM, Pinty JP, Bedos C (1998) Extending twomey’s analytical estimate of nucleated cloud droplet concentrations from CCN spectra. J Atmos Sci 55:3348–3357

    Google Scholar 

  • Croft PJ, Pfost RL, Medlin JM, Johnson GA (1997) Fog forecasting for the southern region: a conceptual model approach. Weather Forecast 12:545–556

    Google Scholar 

  • Dimitrova R, Sharma A, Fernando HJS, Gultepe I, Danchovski V, Wagh S Bardoel S, Wang S (2021) WRF model simulations for coastal fog prediction. Boundary-Layer Meteorol. (in Press)

  • Dorman CE, Hoch SW, Gultepe I, Fernando HJS, Krishnamurthy R (2021) Large scale synoptic weather systems and fog during the C-FOG field experiment. Boundary-Layer Meteorol. (in Press)

  • Duynkerke PG (1988) Application of the E-ε turbulence closure model to the neutral and stable atmospheric boundary layer. J Atmos Sci 45:865–880

    Google Scholar 

  • Fernando HJS, Gultepe I, Dorman C, Pardyjak E, Wang Q, Hoch S, Richter D, Creegan E, Gaberšek S, Bullock T, Hocut C, Chang R, Alappattu D, Dimitrova R, Flagg D, Grachev A, Krishnamurthy R, Singh DJ, Lozovatsky I, Nagare B, Sharma A, Wagh S, Wainwright C, Wroblewski M, Yamaguchi R, Bardoel S, Coppersmith RS, Chisholm N, Gonzales E, Gunawardena N, Hyde O, Morrison T, Olson A, Perelet A, Perrie W, Wang S, Wauer B (2021) C-FOG: life of coastal fog. Bull AMS 176:1977–2017

    Google Scholar 

  • Fletcher NH (1966) The physics of rainclouds. Cambridge University Press, Cambridge, p 390

    Google Scholar 

  • Feingold G, Yang S, Hardesty RM, Cotton WR (1998) Feasibility of retrieving cloud condensation nucleus properties from doppler cloud radar, microwave radiometer, and lidar. J Atmos Ocean Technol 15:1188–1195

    Google Scholar 

  • Ghan SJ, Guzman G, Abdul-Razzak H (1998) Competition between sea salt and sulfate particles as cloud condensation nuclei. J Atmos Sci 55:3340–3347

    Google Scholar 

  • Ghan SJ, Laulainen NS, Easter RC, Wagener R, Nemesure S, Chapman EG, Zhang Y, Leung LR (2001) Evaluation of aerosol direct radiative forcing in MIRAGE. J Geophys Res 106:5295–5316

    Google Scholar 

  • Ghan SJ, Chuang CC, Penner JE (1993) A parametrization of cloud droplet nucleation, part I: single aerosol type. Atmos Res 30:197–221

    Google Scholar 

  • Ghan SJ, Leung LR, EasterRC A-R (1997) Prediction of cloud droplet number in a general circulation model. J Geophys Res 102:777–794

    Google Scholar 

  • Golding BW (1998) Nimrod: A system for generating automated very short range forecasts. Meteorol Appl 5:1–16

    Google Scholar 

  • Golding BW (1993) A study of the influence of terrain on fog development. Mon Weather Rev 121:2529–2541

    Google Scholar 

  • Grachev AA Krishnamurthy R, Fernando HJS, Fairall CV, Bardoel SL, Wang S (2021) Atmospheric turbulence measurements in coastal zone with and without fog. Boundary-Layer Meteorol., current issue (submitted).

  • Grachev AA Krishnamurthy R, Fernando HJS, Fairall CW, Bardoel SL, Wang S (2021) Atmospheric turbulence measurements at a coastal zone with and without fog. Boundary-Layer Meteorol (in press)

  • Gultepe I, Pardyjak E, Hoch SW, Fernando HJS, Dorman C, Flagg DD, Krishnamurthy R, Wang Q, Gaberšek S, Creegan E, Scantland N, Desjardins S, Heidinger A, Pavolonis M, Heymsfield AJ (2021) Coastal fog microphysics using in-situ observations and GOES-R retrievals. Boundary-Layer Meteorol (in press)

  • Gultepe I, Milbrandt J (2007) (2007a) Microphysical observations and mesoscale model simulation of a warm fog case during FRAM project. Pure Appl Geophys 164:1161–1178

    Google Scholar 

  • Gultepe I, Müller MD, Boybeyi Z (2006) A new warm fog parametrization scheme for numerical weather prediction models. J Appl Meteor 45:1469–1480

    Google Scholar 

  • GultepeStarr IDOC (1995) Dynamical structure and turbulence in cirrus clouds: aircraft observations during FIRE. J Atmos Sci 52:4659–4182

    Google Scholar 

  • Gultepe I, Isaac GA (1996) The relationship between cloud droplet and aerosol number concentrations for climate models. Inter J Clim 16:941–946

    Google Scholar 

  • Gultepe I, Isaac GA, Leaitch WR, Banic CM (1996) Parametrization of marine stratus microphysics based on in-situ observations: implications for GCMs. J Climate 9:345–357

    Google Scholar 

  • Gultepe I, Isaac GA (1999) Scale effects on averaging of cloud droplet and aerosol number concentrations: observations and models. J Climate 12:1268–1279

    Google Scholar 

  • Gultepe I, Tardif R, Michaelides SC, Cermak J, Bott A, Bendix J, Müller M, Pagowski M, Hansen B, Ellrod G, Jacobs W, Toth G, Cober SG (2007a) Fog research: a review of past achievements and future perspectives. Pure ApplGeophys., Special issue on fog, edited by I. Gultepe 164:1121–1159

    Google Scholar 

  • Gultepe I, Pagowski M, Reid J (2007b) Using surface data to validate a satellite based fog detection scheme. J Weather Forecast 22:444–456

    Google Scholar 

  • Gultepe I, Pearson G, Milbrandt JA, Hansen B, Platnick S, Taylor P, Gordon M, Oakley JP, Cober SG (2009) The fog remote sensing and modeling (FRAM) field project. Bull Am Meteorol Soc 90:341–359

    Google Scholar 

  • Gultepe I, Milbrandt JA (2010) Probabilistic parametrizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. J Appl Meteor Climatol 49:36–46

    Google Scholar 

  • Gultepe I, Kuhn T, Pavolonis M, Calvert C, Gurka J, Isaac GA, Heymsfield AJ, Liu PSK, Zhou B, Ware R, Ferrier B, Milbrandt J, Hansen B, Bernstein B (2014) Ice fog in arctic during FRAM-IF project: aviation and nowcasting applications. Bull Am Meteorol Soc 95:211–226

    Google Scholar 

  • Gultepe I, Zhou B, Milbrandt J, Bott A, Li Y, Heymsfield AJ, Ferrier B, Ware R, Pavolonis M, Kuhn T, Gurka J, Liu P, Cermak J (2015) A review on ice fog: observations and modeling. Atmos Res 151:2–19

    Google Scholar 

  • Gultepe I (2019) Low level ice clouds-ice fog. Encylopedia of water: science, technology, and society, edited by Patricia A. Maurice. ISBN: 9781119300755 John Wilesy & Sons Inc., DOI: https://doi.org/10.1002/9781119300762.wsts0140. 19 pp

  • Gultepe I, Pardyjak E, Hoch SW, Fernando HJS, Dorman C, Flagg DD, Krishnamurthy R, Wang Q, Gaberšek S, Creegan E, Scantland N, Desjardins S, Winger A, Pavolonis M, Heymsfield AJ (2021) Coastal fog microphysics using in-situ observations and GOES-R retrievals. Boundary-Layer Meteorol., accepted.

  • Haeffelin M, Bergot T, Elias T, Tardif R, Carrer D, Chazette P, Colomb M, Drobinski P, Dupont E, Dupont J, Gomes L, Musson-Genon L, Pietras C, Plana-Fattori A, Protat A, Rangognio J, Raut J, Rémy S, Richard D, Sciare J, Zhang X (2010) Parisfog. Bull Am Meteorol Soc 91:767–783

    Google Scholar 

  • Haiden T, Kann A, Pistotnik (2014) Nowcastiong with INCA during SNOW-V10. Pure Appl Geophys 171(5–6):231–242

    Google Scholar 

  • Jones A, Roberts DL, Slingo A (1994) A climate model study of indirect radiative forcing by anthropogenic sulfate aerosols. Nature 370:450–453

    Google Scholar 

  • Kline SJ, McClintock FA (1953) Analysis of uncertainty in single-sample experiments. Mech Eng 75:3–9

    Google Scholar 

  • Koschmieder H (1924) Theorie der horizontalen sichewite. Beitr Phys Atmos 12:33–53

    Google Scholar 

  • Köhler H (1936) The nucleus in and the growth of hygroscopic droplets. Trans Faraday Soc 32:1152–1161

    Google Scholar 

  • Kunkel BA (1984) 1984 Parametrization of droplet terminal velocity and extinction coefficient in fog models. J Clim Appl Meteorol 23:34–41

    Google Scholar 

  • Lebo ZJ, Morrison H, Seinfeld JH (2012) Are simulated aerosol induced effects on deep convective clouds strongly dependent on saturation adjustment? Atmos Chem Phys 12:9941–9964

    Google Scholar 

  • LPM (2011) Laser Precipitation Monitor. 5.4110.xx.x00, 2.5x STDNWS. Adolf Thies GmbH&Co. KG. Document # 000904. 66 pp

  • Martin GM, Johnson DW, Spice A (1994) The measurement and parametrization of effective radius of droplets in warm stratocumulus clouds. J Atmos Sci 51:1823–1842

    Google Scholar 

  • Mellor G, Yamada T (1982) Development of a turbulence closure model for geophysical fluid problems. Rev Geophys Space Phys 26:851–875

    Google Scholar 

  • Miao Y, Potts R, Huang X, Elliott G, Rivett R (2012) A fuzzy logic fog forecasting model for perth airport. Pure Appl Geophys 169(5–6):1107–1119

    Google Scholar 

  • Moffat RJ (1982) Contributions to the theory of single-sample uncertainty analysis. 250–258 pp.

  • Morrison H, Grabowski WW (2007) Comparison of bulk and bin warm-rain microphysics models using a kinematic framework. J Atmos Sci 64:2839–2861

    Google Scholar 

  • Morrison H, Gettelman A (2008) A new two-moment bulk stratiform cloud microphysics scheme in the community atmosphere model, Version 3 (CAM3). Part I: description and numerical tests. J Climate 21:3642–3659

    Google Scholar 

  • Muller MD, Masbou M, Bott A (2010) Three-dimensional fog forecasting in complex terrain. Q J R Meteorol Soc 136:2189–2202

    Google Scholar 

  • Muller MD, Schmutz C, Parlow E (2007) A one dimensional ensemble forecast and assimilation system for fog prediction. Pure Appl Geophys 164:1241–1264

    Google Scholar 

  • Niu SJ, Lu CS, Zhao LJ, LuYang JJJ (2010) Analysis of the microphysical structure of heavy fog using a droplet spectrometer: a case study. Adv Atmos Sci 27(6):1259–1275

    Google Scholar 

  • Paluch IR, Baumgardner DG (1989) Entrainment and fine-scale mixing in a continental convective cloud. J Atmos Sci 46:261–278

    Google Scholar 

  • Panofsky HA, Dutton JA (1984) The atmosphere turbulence. Wiley, Hoboken, p 397

    Google Scholar 

  • Perelet A, Gultepe I, Hoch SW,Pardyjak E (2021) Response of infrared and microwave scintillometer to hydrometeors. Boundary-Layer Meteorol (in Press)

  • Pezzoli A, Moncalero M, Boscolo A, Cristofori E, Giacometto F, Gastaldi S, Vercelli G (2010) The meteo-hydrological analysis and the sport performance: which are the connections? The case of the XXI Winter Olympic Games, Vancouver 2010. J Sports Med Phys Fitness 50:19–20

    Google Scholar 

  • Price JD, Lane S, Boutle IA, Smith DK, Bergot T, Lac C, Duconge L, McGregor J, Kerr-Munslow A, Pickering M, Clark R (2018) LANFEX: a field and modeling study to improve our understanding and forecasting of radiation fog. Bull Am Meteorol Soc 99:2061–2077

    Google Scholar 

  • Price JD (2019) On the formation and development of radiation: An observational study. Bound-Layer Meteorol 172:167–197

    Google Scholar 

  • Pu Z, Chachere C, Hoch S, Pardyjak E, Gultepe I (2016). Numerical prediction of cold season fog events over complex terrain: the performance of the WRF model during MATERHORN-Fog and early evaluation. Pure Appl Geophys., 3165–3186.

  • Schemenauer RS, Gultepe I, Witiw M (2016) Fog Studies. Meteorological Technology International. April Issue, 52–54.

  • Schwenkel J, Maronga B (2019) Large-eddy simulation of radiation fog with comprehensive two-moment bulk microphysics: impact of different aerosol activation and condensation parametrizations. Atmos Chem Phys 19:7165–7181

    Google Scholar 

  • Scully ME, Geyer WR, Trowbridge JH (2011) The influence of stratification and nonlocal turbulent production on estuarine turbulence: an assessment of turbulence closure with field observations. J Phys Ocean 41:166–185

    Google Scholar 

  • Shi C, Wang L, Zhang H, Deng X, Li D, Qiu M (2012) Fog simulations based on multi-model system: a feasibility study. Pure Appl Geophys 169:941–960

    Google Scholar 

  • Smirnova TG, Benjamin SG, Brown JM (2000) Case study verification of RUC/MAPS fog and visibility forecasts. Preprints, 9th Conf. on ARAM, AMS, Orlando, FL, 31–36.

  • Spiegel JK, Zieger P, Bukowiecki N, Hammer E, Weingartner E, Eugster W (2012) Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100). Atmos Meas Tech 5:2237–2260

    Google Scholar 

  • Spiel DE (1995) On the births of jet drops from bubbles bursting on water surfaces. J Geophys Res 100:4995–5006

    Google Scholar 

  • Spiel DE (1997) More on the births of jet drops from bubbles bursting on seawater surfaces. J Geophys Res 102:5815–5821

    Google Scholar 

  • Spiel DE (1998) On the births of film drops from bubbles bursting on seawater surfaces. J Geophys Res 103:24907–24918

    Google Scholar 

  • Stoelinga TG, Warner TT (1999) Non-hydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. J Appl Meteor 38:385–404

    Google Scholar 

  • Storelvmo TG, Kristjansson JE, Ghan SJ, Kirkevag A, Seland O, Iversen T (2006) Predicting cloud droplet number concentration in Community Atmosphere Model (CAM)-Oslo. J Geophys Res 111:D24208. https://doi.org/10.1029/2005jd006300

    Article  Google Scholar 

  • Thompson G, Eidhammer T (2014) A study of aerosol impacts on clouds and precipitation development in a large winter cyclone. J Atmos Sci 71:3636–3658

    Google Scholar 

  • Thompson G, Field PR, Rasmussen RM, Hall WD (2008) Explicit forecasts of winter precipitation using an improved bulk microphysics scheme. Part II: implementation of a new snow parametrization. Mon Wea Rev 136:5095–5115

    Google Scholar 

  • Torregrosa A, O’Brien A, Faloona IC (2014) Coastal fog, climate change, and the environment. Eos 95(50):473

    Google Scholar 

  • Toth G, Gultepe I, Milbrandt J, Hansen B, Pearson G, Fogarty C, Burrows W (2011) The environment Canada handbook on fog and fog forecasting. Environment Canada. Tech. Manual. ISBN # 978–1–100–52518–1. Available from Environment Canada, Toronto, Canada. 93 pp

  • Troitskaya Y, Kandaurov A, Ermakova O, Kozlov D, Sergeev D, Zilitinkevich S (2018) The ‘“Bag Breakup”’ spume droplet generation mechanism at high winds. Part I: spray generation function. J Phys Oceanogr 48:2167–2188

    Google Scholar 

  • Twomey S (1959) The nuclei of natural cloud formation. Part II: the supersaturation in natural clouds and the variation of cloud droplet concentration. Pure Appl Geophys 43:243–249

    Google Scholar 

  • Twomey S (1974) Pollution and planetary albedo. Atmos Environ 8:1251–1256

    Google Scholar 

  • Twomey S (1991) Aerosols, clouds and radiation. Atmos Environ 25:2435–2442

    Google Scholar 

  • Wagh S, Krishnamurthy R, Wainwright C, Wang S, Fernando HJS, Gultepe I (2020) Microphysics of marine Fog during Stratus cloud lowering. Boundary-Layer Meteorol. In Press.

  • Wainwright C, Richter D (2021) Investigating the sensitivity of marine fog to physical and microphysical processes using large-eddy simulation. Boundary-Layer Meteorol., In Press.

  • Wang S, Yi S, Zhang S, Shi X, Chen X (2020) The Microphysical properties of a sea-fog event along the west coast of the yellow sea in spring. MDPI Atmos 11:413. https://doi.org/10.3390/atmos11040413

    Article  Google Scholar 

  • Wang Q, Yamaguchi RT, Kalogiros JA, Daniels Z, Alappattu DP, Jonsson H, Alvarenga O, Olson A, Wauer BJ, Ortiz-Suslow DG, Fernando HJS (2021) Microphysics and Optical Attenuation in Fog: Observations from Two Coastal Sites, , BLM, submitted.

  • Wilfried J, Nietosvaara V, Bott A, Bendix J, Cermak J, Silas M, Gultepe I (2008) Short range forecasting methods of fog visibility and low clouds. COST Action 722, Earth System Science and Environmental Management Final report on COST-722 Action. ISBN # 978–92–898–0038–9Available from COST Office, Avenue Louise 149, B-1050 Brussel, Belgium. 489 pp.

  • Wilkinson JM, Porson ANF, Bornemann FJ, Weeks M, Field PR, Lock AP (2013) Improved microphysical parametrization of drizzle and fog for operational forecasting using the Met Office Unified Model. Q J R Meteorol Soc 139:488–500

    Google Scholar 

  • Wright BJ, Thomas N (1998) An objective visibility analysis and very short- range forecasting system. Meteorol Appl 5:157–181

    Google Scholar 

  • Wu J (1981) Evidence of sea spray produced by bursting bubbles. Science 212:324–326

    Google Scholar 

  • Yang D, Ritchie H, Desjardins S, Pearson G, MacAfee A, Gultepe I (2009) High Resolution GEM-LAM application in marine fog prediction: evaluation and diagnosis. Weather Forecast 25:727–748

    Google Scholar 

  • Zhou B, Du J (2010) Fog prediction from a multi-model mesoscale ensemble prediction system. Wea Forecast 25:303–322

    Google Scholar 

  • Zhou B, Ferrier BS (2008) Asymptotic analysis of equilibrium radiation fog. J App Met Clim 47:1704–1722

    Google Scholar 

Download references

Acknowledgements

This research was funded by the Office of Naval Research Award # N00014-18-1-2472 entitled: Toward Improving Coastal Fog Prediction (C-FOG). During the project, Dr. R Krishnamurthy was partially funded by the Pacific North-west National Laboratory (PNNL) which is operated for the U.S.A. Department of Energy (DOE) by Battelle Memorial Institute under Contract DE-AC05-76RLO1830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Gultepe.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gultepe, I., Heymsfield, A.J., Fernando, H.J.S. et al. A Review of Coastal Fog Microphysics During C-FOG. Boundary-Layer Meteorol 181, 227–265 (2021). https://doi.org/10.1007/s10546-021-00659-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00659-5

Keywords

Navigation