Skip to main content
Log in

Katabatic Winds over Steep Slopes: Overview of a Field Experiment Designed to Investigate Slope-Normal Velocity and Near-Surface Turbulence

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We describe a new field campaign over a steep, snowy \(30^{\circ }\) alpine slope, designed to investigate three recurrent issues in experimental studies of steep-slope katabatic winds. (1) Entrainment is known to be present in katabatic jets and has been estimated at the interface between the jet and the boundary layer above it. However, to our knowledge, the slope-normal velocity component has never been measured in the katabatic jet. (2) It is hard to accurately measure turbulence in the first tens of centimetres above the surface using standard sonic anemometry due to the filtering effect of the long instrument path. The present field experiment used a three-dimensional multi-hole pitot-type probe with a high sampling frequency (1250 Hz) that was positioned as close to the surface as 3 cm. It provides three-dimensional mean velocity and Reynolds stress tensor from which dissipation can be estimated, as well as spectra for the turbulent quantities. Energy spectra reveal a well-developed inertial range and capture the inertial scales and some of the dissipative scales. (3) Measuring turbulence on a mast usually provides information about mean and turbulent quantities at certain discrete heights because the sensors are sparsely located inside the jet. We present the first measurements of well-developed katabatic flows where the full wind-speed and temperature profiles acquired, from tethered balloon are available at the location of the measurement mast, which comprises three-dimensional anemometry and thermometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andreas EL, Claffey KJ, Jordan RE, Fairall CW, Guest PS, Persson POG, Grachev AA (2006) Evaluations of the Von Kármán constant in the atmospheric surface layer. J Fluid Mech 559:117

    Article  Google Scholar 

  • Baldocchi DD (2003) Assessing the eddy covariance technique for evaluating carbon dioxide exchange rates of ecosystems: past, present and future. Glob Change Biol 9(4):479–492

    Article  Google Scholar 

  • Blein S (2016) Observation and modelisation of stable atmospheric boundary layer in complex topography: turbulent processes of katabatic flows (in French). Ph.D .thesis, Université Grenoble Alpes, France

  • Boussinesq J (1877) Essai sur la théorie des eaux courantes. C R Acad Sci 87:1–680

    Google Scholar 

  • Brock BW, Willis IC, Sharp MJ (2006) Measurement and parameterization of aerodynamic roughness length variations at Haut Glacier d’Arolla, Switzerland. J Glaciol 52(177):281–297

    Article  Google Scholar 

  • Brun C, Blein S, Chollet J (2017) Large-eddy simulation of a katabatic jet along a convexly curved slope. Part 1: statistical results. J Atmos Sci 74(12):4047–4073

    Article  Google Scholar 

  • Buchhave P, Velte CM (2017) Measurement of turbulent spatial structure and kinetic energy spectrum by exact temporal-to-spatial mapping. Phys Fluids 29(8):085,109

    Article  Google Scholar 

  • Charrondière C, Brun C, Jean-Emmanuel S, Cohard JM, Biron R, Blein S (2020) Buoyancy effects in the turbulence kinetic energy budget and Reynolds stress budget for a katabatic jet over a steep alpine slope. Boundary-Layer Meteorol 177(1):97–122

    Article  Google Scholar 

  • Davies J, Robinson P, Nunez M (1971) Field determinations of surface emissivity and temperature for Lake Ontario. J Appl Meteorol 10(4):811–819

    Article  Google Scholar 

  • Denby B, Smeets C (2000) Derivation of turbulent flux profiles and roughness lengths from katabatic flow dynamics. J Appl Meteorol 39(9):1601–1612

    Article  Google Scholar 

  • Dozier J, Warren SG (1982) Effect of viewing angle on the infrared brightness temperature of snow. Water Resour Res 18(5):1424–1434

    Article  Google Scholar 

  • Duynkerke PG, Van den Broeke MR (1994) Surface energy balance and katabatic flow over glacier and tundra during GIMEX-91. Glob Planet Change 9(1–2):17–28

    Article  Google Scholar 

  • Eriksson J, Karlsson R, Persson J (1998) An experimental study of a two-dimensional plane turbulent wall jet. Exp Fluids 25(1):50–60

    Article  Google Scholar 

  • Fedorovich E, Shapiro A (2009) Structure of numerically simulated katabatic and anabatic flows along steep slopes. Acta Geophys 57(4):981–1010

    Article  Google Scholar 

  • Finnigan J, Ayotte K, Harman I, Katul G, Oldroyd H, Patton E, Poggi D, Ross A, Taylor P (2020) Boundary-layer flow over complex topography. Boundary-Layer Meteorol 177:247–313

    Article  Google Scholar 

  • Foken T (2006) 50 Years of the Monin–Obukhov similarity theory. Boundary-Layer Meteorol 119(3):431–447

    Article  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2009) The climate near the ground. Rowman & Littlefield, Lanham

    Google Scholar 

  • Grachev AA, Leo LS, Di Sabatino S, Fernando HJS, Pardyjak ER, Fairall CW (2016) Structure of turbulence in katabatic flows below and above the wind-speed maximum. Boundary-Layer Meteorol 159(3):469–494

    Article  Google Scholar 

  • Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58(21):3349–3354

    Article  Google Scholar 

  • Haiden T, Whiteman CD (2005) Katabatic flow mechanisms on a low-angle slope. J Appl Meteorol 44(1):113–126

    Article  Google Scholar 

  • Helmis C, Papadopoulos K (1996) Some aspects of the variation with time of katabatic flow over a simple slope. Q J R Meteorol Soc 122(531):595–610

    Article  Google Scholar 

  • Horst T, Doran J (1988) The turbulence structure of nocturnal slope flow. J Atmos Sci 45(4):605–616

    Article  Google Scholar 

  • Horst T, Semmer S, Maclean G (2015) Correction of a non-orthogonal, three-component sonic anemometer for flow distortion by transducer shadowing. Boundary-Layer Meteorol 155(3):371–395

    Article  Google Scholar 

  • Howell J, Mahrt L (1997) Multiresolution flux decomposition. Boundary-Layer Meteorol 83(1):117–137

    Article  Google Scholar 

  • Jensen DD, Nadeau DF, Hoch SW, Pardyjak ER (2017) The evolution and sensitivity of katabatic flow dynamics to external influences through the evening transition. Q J R Meteorol Soc 143(702):423–438

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Book  Google Scholar 

  • Kneller BC, Bennett SJ, McCaffrey WD (1999) Velocity structure, turbulence and fluid stresses in experimental gravity currents. J Geophys Res Oceans 104(C3):5381–5391

    Article  Google Scholar 

  • Krug D, Holzner M, Lüthi B, Wolf M, Kinzelbach W, Tsinober A (2013) Experimental study of entrainment and interface dynamics in a gravity current. Exp Fluids 54(5):1530

    Article  Google Scholar 

  • Largeron Y, Staquet C (2016) Persistent inversion dynamics and wintertime \(\text{ PM}_{10}\) air pollution in alpine valleys. Atmos Environ 135:92–108

    Article  Google Scholar 

  • Litt M, Sicart JE, Helgason WD, Wagnon P (2015) Turbulence characteristics in the atmospheric surface layer for different wind regimes over the Tropical Zongo Glacier (Bolivia, \(16^{\circ }\) S). Boundary-Layer Meteorol 154(3):471–495

    Article  Google Scholar 

  • Litt M, Sicart JE, Six D, Wagnon P, Helgason WD (2017) Surface-layer turbulence, energy balance and links to atmospheric circulations over a mountain glacier in the French Alps. Cryosphere 11(2):971–987

    Article  Google Scholar 

  • Low PS (1990) Katabatic winds in the lower Tamar Valley, Tasmania. Il Nuovo Cimento C 13(6):981–994

    Article  Google Scholar 

  • Manins P, Sawford B (1979) A model of katabatic winds. J Atmos Sci 36(4):619–630

    Article  Google Scholar 

  • McNider RT (1982) A note on velocity fluctuations in drainage flows. J Atmos Sci 39(7):1658–1660

    Article  Google Scholar 

  • Monti P, Fernando H, Princevac M, Chan W, Kowalewski T, Pardyjak E (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59(17):2513–2534

    Article  Google Scholar 

  • Morales A, Wächter M, Peinke J (2012) Characterization of wind turbulence by higher-order statistics. Wind Energy 15(3):391–406

    Article  Google Scholar 

  • Myers G, Schauer J, Eustis R (1961) The plane turbulent wall jet. Part 1: jet development and friction factor. Technical report, Department of Mechanical Engineering, Stanford University

  • Nadeau D, Pardyjak E, Higgins C, Huwald H, Parlange M (2013a) Flow during the evening transition over steep alpine slopes. Q J R Meteorol Soc 139(672):607–624

    Article  Google Scholar 

  • Nadeau D, Pardyjak E, Higgins C, Parlange M (2013b) Similarity scaling over a steep alpine slope. Boundary-Layer Meteorol 147(3):401–419

    Article  Google Scholar 

  • Oldroyd HJ, Katul G, Pardyjak ER, Parlange MB (2014) Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophys Res Lett 41(13):4761–4768

    Article  Google Scholar 

  • Oldroyd H, Pardyjak E, Higgins C, Parlange M (2016a) Buoyant turbulent kinetic energy production in steep-slope katabatic flow. Boundary-Layer Meteorol 161(3):405–416

    Article  Google Scholar 

  • Oldroyd H, Pardyjak E, Huwald H, Parlange M (2016b) Adapting tilt corrections and the governing flow equations for steep, fully three-dimensional, mountainous terrain. Boundary-Layer Meteorol 159(3):539–565

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Poulos G, Zhong S (2008) An observational history of small-scale katabatic winds in mid-latitudes. Geogr Compass 2(6):1798–1821

    Article  Google Scholar 

  • Prandtl L (1942) Führer durch die strömungslehre. F Vieweg & Sohn, Braunschweig

    Google Scholar 

  • Princevac M, Fernando H, Whiteman CD (2005) Turbulent entrainment into natural gravity-driven flows. J Fluid Mech 533:259–268

    Article  Google Scholar 

  • Princevac M, Hunt J, Fernando H (2008) Quasi-steady katabatic winds on slopes in wide valleys: hydraulic theory and observations. J Atmos Sci 65(2):627–643

    Article  Google Scholar 

  • Rajaratnam N (1976) Turbulent jets. Elsevier, Amsterdam

    Google Scholar 

  • Rotach MW, Stiperski I, Fuhrer O, Goger B, Gohm A, Obleitner F, Rau G, Sfyri E, Vergeiner J (2017) Investigating exchange processes over complex topography: the Innsbruck Box (i-Box). Bull Am Meteorol Soc 98(4):787–805

    Article  Google Scholar 

  • Schultz M, Flack K (2007) The rough-wall turbulent boundary layer from the hydraulically smooth to the fully rough regime. J Fluid Mech 580:381

    Article  Google Scholar 

  • Segalini A, Örlü R, Alfredsson PH (2013) Uncertainty analysis of the Von Kármán constant. Exp Fluids 54(2):1460

    Article  Google Scholar 

  • Shapiro A, Fedorovich E (2014) A boundary-layer scaling for turbulent katabatic flow. Boundary-Layer Meteorol 153(1):1–17

    Article  Google Scholar 

  • Smeets C, Duynkerke P, Vugts H (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part 1: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87(1):117–145

    Article  Google Scholar 

  • Steeneveld, GJ and Wokke, MJJ and Groot Zwaaftink, CD and Pijlman, S and Heusinkveld, BG and Jacobs, AFG and Holtslag, AAM (2010) Observations of the radiation divergence in the surface layer and its implication for its parameterization in numerical weather prediction models. J Geophys Res Atmos 115(D6):1–13. Wiley Online Library

  • Stiperski I, Holtslag AA, Lehner M, Hoch SW, Whiteman CD (2020) On the turbulence structure of deep katabatic flows on a gentle mesoscale slope. Q J R Meteorol Soc 146:1206–1231

    Article  Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology, vol 126. Kluwer Academic Publishers, Dordrecht

    Book  Google Scholar 

  • Sun J (2007) Tilt corrections over complex terrain and their implication for \(\text{ CO}_2\) transport. Boundary-Layer Meteorol 124(2):143–159

    Article  Google Scholar 

  • Sun J, Oncley SP, Burns SP, Stephens BB, Lenschow DH, Campos T, Monson RK, Schimel DS, Sacks WJ, De Wekker SF et al (2010) A multiscale and multidisciplinary investigation of ecosystem–atmosphere \(\text{ CO}_{2}\) exchange over the rocky mountains of Colorado. Bull Am Meteorol Soc 91(2):209–230

    Article  Google Scholar 

  • Tachie M, Balachandar R, Bergstrom D (2002) Scaling the inner region of turbulent plane wall jets. Exp Fluids 33(2):351–354

    Article  Google Scholar 

  • Van Den Broeke MR (1997) Momentum, heat, and moisture budgets of the katabatic wind layer over a midlatitude glacier in summer. J Appl Meteorol 36(6):763–774

    Article  Google Scholar 

  • Van Den Broeke MR, Duynkerke PG, Henneken EA (1994) Heat, momentum and moisture budgets of the katabatic layer over the melting zone of the west Greenland ice sheet in summer. Boundary-Layer Meteorol 71(4):393–413

    Article  Google Scholar 

  • Vickers D, Mahrt L (2003) The cospectral gap and turbulent flux calculations. J Atmos Ocean Technol 20(5):660–672

    Article  Google Scholar 

  • Villafruela J, Castro F, Parra M (2008) Experimental study of parallel and inclined turbulent wall jets. Exp Therm Fluid Sci 33(1):132–139

    Article  Google Scholar 

  • Whiteman CD (2000) Mountain meteorology: fundamentals and applications. Oxford University Press, New York

    Book  Google Scholar 

  • Wilczak J, Oncley S, Stage S (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99(1):127–150

    Article  Google Scholar 

  • Zilitinkevich S, Calanca P (2000) An extended similarity theory for the stably stratified atmospheric surface layer. Q J R Meteorol Soc 126(566):1913–1923

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the French National program LEFE (Les Enveloppes Fluides et l’Environnement) under the application COCA AO INSU LEFE 2021 and by a Grant from Labex OSUG@2020 (Investissements d’avenir ANR10 LABX56). We would like to thank J. Dagaut, M. Guilbot, A. Martin, H. Michallet, M. Obligado, C. Poncet, I. Redor, L. Seguinot and T. Sue for their participation to the field experiment. We also would like to thank the city administration of Revel (38420, France) for their logistical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudine Charrondière.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charrondière, C., Brun, C., Cohard, JM. et al. Katabatic Winds over Steep Slopes: Overview of a Field Experiment Designed to Investigate Slope-Normal Velocity and Near-Surface Turbulence. Boundary-Layer Meteorol 182, 29–54 (2022). https://doi.org/10.1007/s10546-021-00644-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00644-y

Keywords

Navigation