Skip to main content
Log in

Sea-Spray-Generation Dependence on Wind and Wave Combinations: A Laboratory Study

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We investigate the effects of wind–wave interactions on the surface sea-spray-generation flux. To this end, the Marine Aerosol Tunnel Experiment (MATE2019) was conducted at the Pytheas Institute large wave–wind facility in Luminy (Marseille, France) over the period June–July 2019. A unique range of air–sea boundary conditions was generated by configuring the laboratory with four types of wave forcing and five wind speeds spanning 8–20 m s\(^{-1}\). Young and developed waves were included, with wave ages between 1.3 and 9.5 (defined in terms of phase speed and friction velocity). Vertical sea-spray-concentration profiles measured over the 0.1–47.5 \(\upmu \)m radius range and a flux–profile method allowed estimation of the sea-spray-generation flux. Results show that the flux increases for increased wind-induced wave breaking, and is highest for steep and heavily-breaking waves. Scaling analysis shows that the sea-spray generation is best correlated with the wave-slope variance for larger droplets (20 \(\upmu \)m and above, assumed predominantly spume droplets generated by surface tearing). For smaller droplets (7–20 \(\upmu \)m, presumed predominantly jet droplets generated by bubble bursting), the highest correlation is found with a non-dimensional number combining the wave-slope variance with the friction velocity cubed. This is reflected in the formulation of two wave-state-dependent sea-spray-generation functions, each valid for wind speeds 12–20 m s\(^{-1}\) and droplet radii 3–35 \(\upmu \)m, thereby covering jet and spume droplet production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Andreas EL (1989) Thermal and size evolution of sea spray droplets. U.S. Army Cold Reg Res Eng Lab Hanover, Tech Rep 89-11

  • Andreas EL (1992) Sea spray and the turbulent air–sea heat fluxes. J Geophys Res Oceans 97(C7):11,429–11,441. https://doi.org/10.1029/92JC00876

    Article  Google Scholar 

  • Andreas EL (1998) A new sea spray generation function for wind speeds up to 32 m/s. J Phys Ocean 28(11):2175–2184. https://doi.org/10.1175/1520-0485

    Article  Google Scholar 

  • Andreas EL (2002) A review of the sea spray generation function for the open ocean. Adv Fluid Mech 33:1–46

    Google Scholar 

  • Andreas EL, Jones KF, Fairall CW (2010) Production velocity of sea spray droplets. J Geophys Res Oceans 115(C12)

  • Anguelova M, Barber RP, Wu J (1999) Spume drops produced by the wind tearing of wave crests. J Phys Ocean 29(6):1156–1165. https://doi.org/10.1175/1520-0485

    Article  Google Scholar 

  • Ardhuin F, Gille ST, Menemenlis D, Rocha CB, Rascle N, Chapron B, Gula J, Molemaker J (2017) Small-scale open ocean currents have large effects on wind wave heights. J Geophys Res Oceans 122(6):4500–4517

    Article  Google Scholar 

  • Banner ML, Melville WK (1976) On the separation of air flow over water waves. J Fluid Mech 77(4):825–842

    Article  Google Scholar 

  • Banner ML, Gemmrich JR, Farmer DM (2002) Multiscale measurements of ocean wave breaking probability. J Phys Ocean 32(12):3364–3375

    Article  Google Scholar 

  • Blanchard DC (1963) The electrification of the atmosphere by particles from bubbles in the sea. Prog Ocean 1:73–202

    Article  Google Scholar 

  • Bringer A, Chapron B, Mouche A, Guérin CA (2013) Revisiting the short-wave spectrum of the sea surface in the light of the weighted curvature approximation. IEEE Trans Geosci Remote 52(1):679–689

    Article  Google Scholar 

  • Brumer SE, Zappa CJ, Brooks IM, Tamura H, Brown SM, Blomquist BW, Fairall CW, Cifuentes-Lorenzen A (2017) Whitecap coverage dependence on wind and wave statistics as observed during SO GasEx and HiWinGS. J Phys Ocean 47(9):2211–2235

    Article  Google Scholar 

  • Buckley MP, Veron F (2019) The turbulent airflow over wind generated surface waves. Euro J Mech-B/Fluids 73:132–143

    Article  Google Scholar 

  • Callaghan AH, Deane GB, Stokes MD, Ward B (2012) Observed variation in the decay time of oceanic whitecap foam. J Geophys Res Oceans 117(C9)

  • Canepa E, Builtjes PJ (2017) Thoughts on earth system modeling: from global to regional scale. Earth Sci Rev 171:456–462

    Article  Google Scholar 

  • Cathelain M (2017) Development of a deterministic numerical model for the study of the coupling between an atmospheric flow and a sea state. PhD thesis, Ecole Centrale de Nantes (ECN)

  • Chen Y, Cheng Y, Ma N, Wolke R, Nordmann S, Schüttauf S, Ran L, Wehner B, Birmili W, Gon HA et al (2016) Sea salt emission, transport and influence on size-segregated nitrate simulation: a case study in northwestern Europe by WRF-Chem. Atmos Chem Phys 16(18):12,081–12,097

    Article  Google Scholar 

  • Cipriano RJ, Blanchard DC (1981) Bubble and aerosol spectra produced by a laboratory ‘breaking wave’. J Geophys Res Oceans 86(C9):8085–8092

    Article  Google Scholar 

  • Coantic M, Ramamonjiarisoa A, Mestayer P, Resch F, Favre A (1981) Wind-water tunnel simulation of small-scale ocean–atmosphere interactions. J Geophys Res Oceans 86(C7):6607–6626

    Article  Google Scholar 

  • Cox C, Munk W (1956) Slopes of the sea surface deduced from photographs of sun glitter. Bull Scripps Inst Ocean

  • De Leeuw G (1986) Vertical profiles of giant particles close above the sea surface. Tellus B 38(1):51–61

    Article  Google Scholar 

  • Demoisson A, Tedeschi G, Piazzola J (2013) A model for the atmospheric transport of sea-salt particles in coastal areas. Atmos Res 132:144–153

    Article  Google Scholar 

  • Donelan MA, Hamilton J, Hui W (1985) Directional spectra of wind-generated ocean waves. Philos Trans R Soc Lon Ser A Math Phys Sci 315(1534):509–562

    Google Scholar 

  • Duncan J (1981) An experimental investigation of breaking waves produced by a towed hydrofoil. Proc Roy Soc Lon Math Phys Sci 377(1770):331–348

    Google Scholar 

  • Edson J, Fairall C (1994) Spray droplet modeling: 1. Lagrangian model simulation of the turbulent transport of evaporating droplets. J Geophys Res Oceans 99(C12):25,295–25,311

    Article  Google Scholar 

  • Elfouhaily T, Chapron B, Katsaros K, Vandemark D (1997) A unified directional spectrum for long and short wind-driven waves. J Geophys Res Oceans 102(C7):15,781–15,796

    Article  Google Scholar 

  • Fairall C, Banner M, Peirson W, Asher W, Morison R (2009) Investigation of the physical scaling of sea spray spume droplet production. J Geophys Res Oceans 114(C10)

  • Frick G, Hoppel W (2000) Airship measurements of ship’s exhaust plumes and their effect on marine boundary layer clouds. J Atmos Sci 57(16):2625–2648

    Article  Google Scholar 

  • Hasselmann K, Barnett T, Bouws E, Carlson H, Cartwright D, Enke K, Ewing J, Gienapp H, Hasselmann D, Kruseman P et al (1973) Measurements of wind-wave growth and swell decay during the joint north sea wave project (JONSWAP). Ergänzungsheft 8–12

  • Holmes P, Lumley JL, Berkooz G (1996) Turbulence. Cambridge monographs on mechanics, coherent structures, dynamical systems and symmetry. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511622700

    Book  Google Scholar 

  • Holthuijsen L, Herbers T (1986) Statistics of breaking waves observed as whitecaps in the open sea. J Phys Ocean 16(2):290–297

    Article  Google Scholar 

  • Husain NT, Hara T, Buckley MP, Yousefi K, Veron F, Sullivan PP (2019) Boundary layer turbulence over surface waves in a strongly forced condition: LES and observation. J Phys Ocean 49(8):1997–2015

    Article  Google Scholar 

  • Iida N, Toba Y, Chaen M (1992) A new expression for the production rate of sea water droplets on the sea surface. J Ocean 48(4):439–460

    Article  Google Scholar 

  • Jaenicke R (1984) Physical aspects of atmospheric aerosol. In: Georgii H, Jaeschke W (eds) Chemistry of the unpolluted and polluted troposphere, pp 341–373

  • Jähne B, Riemer KS (1990) Two-dimensional wave number spectra of small-scale water surface waves. J Geophys Res Oceans 95(C7):11,531–11,546

    Article  Google Scholar 

  • Johansson JH, Salter ME, Navarro JA, Leck C, Nilsson ED, Cousins IT (2019) Global transport of perfluoroalkyl acids via sea spray aerosol. Environ Sci Proc Impacts 21(4):635–649

    Article  Google Scholar 

  • Kawai S (1981) Visualization of airflow separation over wind-wave crests under moderate wind. Boundary-Layer Meteorol 21(1):93–104

    Article  Google Scholar 

  • Lafon C, Piazzola J, Forget P, Le Calve O, Despiau S (2004) Analysis of the variations of the whitecap fraction as measured in a coastal zone. Boundary-Layer Meteorol 111(2):339–360

    Article  Google Scholar 

  • Lafon C, Piazzola J, Forget P, Despiau S (2007) Whitecap coverage in coastal environment for steady and unsteady wave field conditions. J Mar Syst 66(1–4):38–46

    Article  Google Scholar 

  • Laussac S, Piazzola J, Tedeschi G, Yohia C, Canepa E, Rizza U, Van Eijk A (2018) Development of a fetch dependent sea-spray source function using aerosol concentration measurements in the north-western mediterranean. Atmos Environ 193:177–189

    Article  Google Scholar 

  • Lenain L, Melville WK (2017) Evidence of sea-state dependence of aerosol concentration in the marine atmospheric boundary layer. J Phys Ocean 47(1):69–84

    Article  Google Scholar 

  • Lenain L, Statom NM, Melville WK (2019) Airborne measurements of surface wind and slope statistics over the ocean. J Phys Ocean 49(11):2799–2814

    Article  Google Scholar 

  • Lewis ER, Lewis R, Karlstrom KE, Lewis ER, Schwartz SE (2004) Sea salt aerosol production: mechanisms, methods, measurements, and models, vol 152. American Geophysical Union

  • Mallet M, Roger J, Despiau S, Dubovik O, Putaud J (2003) Microphysical and optical properties of aerosol particles in urban zone during ESCOMPTE. Atmos Res 69(1–2):73–97

    Article  Google Scholar 

  • Marechal G, Ardhuin F (2021) Surface currents and significant wave height gradients: matching numerical models and high-resolution altimeter wave heights in the agulhas current region. J Geophys Res Oceans 126(2):e2020JC016564

  • Mårtensson E, Nilsson E, de Leeuw G, Cohen L, Hansson HC (2003) Laboratory simulations and parameterization of the primary marine aerosol production. J Geophys Res Atmos 108(D9)

  • Mehta S, Ortiz-Suslow DG, Smith A, Haus B (2019) A laboratory investigation of spume generation in high winds for fresh and seawater. J Geophys Res Atmos 124(21):11,297–11,312

    Article  Google Scholar 

  • Monahan E, Spiel D, Davidson K (1986) A model of marine aerosol generation via whitecaps and wave disruption. In: Oceanic whitecaps. Springer, pp 167–174

  • Monahan EC, Muircheartaigh I (1980) Optimal power-law description of oceanic whitecap coverage dependence on wind speed. J Phys Ocean 10(12):2094–2099

    Article  Google Scholar 

  • Monin AS, Obukhov AM (1954) Basic laws of turbulent mixing in the surface layer of the atmosphere. Contrib Geophys Inst Acad Sci USSR 151(163):e187

    Google Scholar 

  • Mueller JA, Veron F (2009) A sea state-dependent spume generation function. J Phys Ocean 39(9):2363–2372

    Article  Google Scholar 

  • Mueller JA, Veron F (2014) Impact of sea spray on air–sea fluxes. Part I: Results from stochastic simulations of sea spray drops over the ocean. J Phys Ocean 44(11):2817–2834

    Article  Google Scholar 

  • Mulcahy J, O’Dowd C, Jennings S, Ceburnis D (2008) Significant enhancement of aerosol optical depth in marine air under high wind conditions. Geophys Res Lett 35(16)

  • Munk W (2009) An inconvenient sea truth: spread, steepness, and skewness of surface slopes. Ann Rev Mar Sci 1:377–415

    Article  Google Scholar 

  • Neumann D, Matthias V, Bieser J, Aulinger A, Quante M (2016) A comparison of sea salt emission parameterizations in northwestern Europe using a chemistry transport model setup. Atmos Chem Phys 16:9905–9933

    Article  Google Scholar 

  • Newell AC, Zakharov VE (1992) Rough sea foam. Phys Rev Lett 69(8):1149

    Article  Google Scholar 

  • Newitt D (1954) Liquid entrainment 1. The mechanism of drop formation from gas vapour bubbles. Trans Inst Chem Eng 32:244–261

    Google Scholar 

  • Ortiz-Suslow DG, Haus BK, Mehta S, Laxague NJ (2016) Sea spray generation in very high winds. J Atmos Sci 73(10):3975–3995

    Article  Google Scholar 

  • Ovadnevaite J, de Leeuw G, Ceburnis D, Monahan C, Partanen AI, Korhonen H, O’Dowd C et al (2014) A sea spray aerosol flux parameterization encapsulating wave state. Atmos Chem Phys 14(4):1837

    Article  Google Scholar 

  • Petelski T, Markuszewski P, Makuch P, Jankowski A, Rozwadowska A (2014) Studies of vertical coarse aerosol fluxes in the boundary layer over the baltic sea. Oceanogr 56(4):697–710

    Google Scholar 

  • Peureux C, Benetazzo A, Ardhuin F (2018) Note on the directional properties of meter-scale gravity waves. Ocean Sci 14(1):41–52

    Article  Google Scholar 

  • Pianezze J, Barthe C, Bielli S, Tulet P, Jullien S, Cambon G, Bousquet O, Claeys M, Cordier E (2018) A new coupled ocean-waves-atmosphere model designed for tropical storm studies: example of tropical cyclone Bejisa (2013–2014) in the South-West Indian Ocean. J Adv Mod Earth Sys 10(3):801–825

    Article  Google Scholar 

  • Piazzola J, Mihalopoulos N, Canepa E, Tedeschi G, Prati P, Zarmpas P, Bastianini M, Missamou T, Cavaleri L (2016) Characterization of aerosols above the northern adriatic sea: case studies of offshore and onshore wind conditions. Atmos Environ 132:153–162

    Article  Google Scholar 

  • Plant WJ (1982) A relationship between wind stress and wave slope. J Geophys Res Oceans 87(C3):1961–1967

    Article  Google Scholar 

  • Pope SB (2000) Turbulent flows. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511840531

  • Pruppacher HR, Klett J (1978) Microphysics of clouds and precipitation. Dordrecht, Amsterdam

    Book  Google Scholar 

  • Ramberg SE, Griffin OM (1987) Laboratory study of steep and breaking deep water waves. J Water Port Coast Ocean Eng 113(5):493–506

    Article  Google Scholar 

  • Reul N, Branger H, Giovanangeli JP (2008) Air flow structure over short-gravity breaking water waves. Boundary-Layer Meteorol 126(3):477–505

    Article  Google Scholar 

  • Richter DH, Dempsey AE, Sullivan PP (2019) Turbulent transport of spray droplets in the vicinity of moving surface waves. J Phys Ocean 49(7):1789–1807

    Article  Google Scholar 

  • Romero L, Lenain L, Melville WK (2017) Observations of surface wave–current interaction. J Phys Ocean 47(3):615–632

    Article  Google Scholar 

  • Savelyev I, Anguelova M, Frick G, Dowgiallo D, Hwang P, Caffrey P, Bobak J (2014) On direct passive microwave remote sensing of sea spray aerosol production. Atmos Chem Phys 14(21):11,611

    Article  Google Scholar 

  • Schwendeman M, Thomson J (2015) Observations of whitecap coverage and the relation to wind stress, wave slope, and turbulent dissipation. J Geophys Res Oceans 120(12):8346–8363

    Article  Google Scholar 

  • Sellegri K, O’Dowd C, Yoon Y, Jennings S, de Leeuw G (2006) Surfactants and submicron sea spray generation. J Geophys Res Atmos 111(D22)

  • Smith M, Park P, Consterdine I (1993) Marine aerosol concentrations and estimated fluxes over the sea. Q J Roy Meteorol Soc 119(512):809–824

    Article  Google Scholar 

  • Spiel DE (1994) The sizes of the jet drops produced by air bubbles bursting on sea-and fresh-water surfaces. Tellus B Chem Phys Meteorol 46(4):325–338

    Article  Google Scholar 

  • Stokes GG (1880) Supplement to a paper on the theory of oscillatory waves. Math Phys Pap 1(314–326):14

    Google Scholar 

  • Toba Y, Koga M (1986) A parameter describing overall conditions of wave breaking, whitecapping, sea-spray production and wind stress. In: Oceanic whitecaps. Springer, pp 37–47

  • Toba Y, Komori S, Suzuki Y, Zhao D (2006) Similarity and dissimilarity in air-sea momentum and CO2 transfers: the nondimensional transfer coefficients in light of windsea Reynolds number. Atmos-Ocean Inter 2:53–82

    Article  Google Scholar 

  • Troitskaya Y, Kandaurov A, Ermakova O, Kozlov D, Sergeev D, Zilitinkevich S (2018) The bag breakup spume droplet generation mechanism at high winds. Part I: Spray generation function. J Phys Ocean 48(9):2167–2188

    Article  Google Scholar 

  • Tsyro S, Aas W, Soares J, Sofiev M, Berge H, Spindler G (2011) Modelling of sea salt concentrations over Europe: key uncertainties and comparison with observations. Atmos Chem Phys 11(20):10,367–10,388

    Article  Google Scholar 

  • Vandemark D, Chapron B, Sun J, Crescenti GH, Graber HC (2004) Ocean wave slope observations using radar backscatter and laser altimeters. J Phys Ocean 34(12):2825–2842

    Article  Google Scholar 

  • Veron F (2015) Ocean spray. Ann Rev Fluid Mech 47:507–538

    Article  Google Scholar 

  • Veron F, Hopkins C, Harrison E, Mueller J (2012) Sea spray spume droplet production in high wind speeds. Geophys Res Lett 39(16)

  • van Eijk AM, Tranchant BS, Mestayer PG (2001) Seacluse: numerical simulation of evaporating sea spray droplets. J Geophys Res Oceans 106(C2):2573–2588

    Article  Google Scholar 

  • Woolf DK (1997) Bubbles and their role in gas exchange. Sea Surf Glob Change

  • Wu J (1993) Production of spume drops by the wind tearing of wave crests: the search for quantification. J Geophys Res Oceans 98(10):18,221–18,227

    Article  Google Scholar 

  • Yoon Y, Ceburnis D, Cavalli F, Jourdan O, Putaud J, Facchini M, Decesari S, Fuzzi S, Sellegri K, Jennings S et al (2007) Seasonal characteristics of the physicochemical properties of north atlantic marine atmospheric aerosols. J Geophys Res Atmos 112(D4)

  • Zhao D, Toba Y (2001) Dependence of whitecap coverage on wind and wind-wave properties. J Ocean 57(5):603–616

    Article  Google Scholar 

  • Zhao D, Toba Y, Sugioka KI, Komori S (2006) New sea spray generation function for spume droplets. J Geophys Res Oceans 111(C2)

Download references

Acknowledgements

A special thanks to engineer Rémi Chemin (University of Toulon) for his thoughts and contribution during the laboratory experiment. We are grateful for the sponsorship by the Agence Innovation Défense (AID-DGA) under contract 2018-60-0038 and the Region SUD contract 2018-06085. This work also benefitted from the MATRAC research effort sponsored by ANR-ASTRID under contract ANR-18-ASTR-0002.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to William Bruch or Jacques Piazzola.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bruch, W., Piazzola, J., Branger, H. et al. Sea-Spray-Generation Dependence on Wind and Wave Combinations: A Laboratory Study. Boundary-Layer Meteorol 180, 477–505 (2021). https://doi.org/10.1007/s10546-021-00636-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00636-y

Keywords

Navigation