Skip to main content

Impact of the Nocturnal Low-Level Jet and Orographic Waves on Turbulent Motions and Energy Fluxes in the Lower Atmospheric Boundary Layer

Abstract

The nocturnal low-level jet (LLJ) and orographic (gravity) waves play an important role in the generation of turbulence and pollutant dispersion and can affect the energy production by wind turbines. Additionally, gravity waves have an influence on the local mixing and turbulence within the surface layer and the vertical flux of mass into the lower atmosphere. On 25 September 2017, during a field campaign, a persistent easterly LLJ and gravity waves were observed simultaneously in a coastal area in the north of France. We explore the variability of the wind speed, turbulent eddies, and turbulence kinetic energy in the time–frequency and space domain using an ultrasonic anemometer and a scanning wind lidar. The results reveal a significant enhancement of the turbulence-kinetic-energy dissipation (by 50%) due to gravity waves in the LLJ shear layer (below the jet core) during the period of wave propagation. Large magnitudes of zonal and vertical components of the shear stress (approximately 0.4 and 1.5 m2 s−2, respectively) are found during that period. Large eddies (scales of 110 to 280 m) matching the high-wind-speed regime are found to propagate the momentum downwards, which enhances the mass transport from the LLJ shear layer to the roughness layer. Furthermore, these large-scale eddies are associated with the crests while comparatively small-scale eddies are associated with the troughs of the gravity wave.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  • Abdullah AJ (1955) The atmospheric solitary wave. Bull Am Meteorol Soc 36(10):511–518

    Article  Google Scholar 

  • Augustin P, Billet S, Crumeyrolle S, Deboudt K, Dieudonné E, Flament P, Fourmentin M, Guilbaud S, Hanoune B, Landkocz Y, Méausoone C, Roy S, Schmitt FG, Sentchev A, Sokolov A (2020) Impact of sea breeze dynamics on atmospheric pollutants and their toxicity in industrial and urban coastal environments. Remote Sens 12(4):648

    Article  Google Scholar 

  • Banta RM, Pichugina YL, Newsom RK (2003) Relationship between low-level jet properties and turbulence kinetic energy in the nocturnal stable boundary layer. J Atmos Sci 60(20):2549–2555

    Article  Google Scholar 

  • Birgitta K (1998) Low level jets in a marine boundary layer during spring. Contrib Atmos Phys 71:359–373

    Google Scholar 

  • Bodini N, Lundquist JK, Newsom RK (2018) Estimation of turbulence dissipation rate and its variability from sonic anemometer and wind Doppler lidar during the XPIA field campaign. Atmos Meas Tech 11(7):4291–4308

    Article  Google Scholar 

  • Bonner WD (1968) Climatology of the low level jet. Mon Weather Rev 96(12):833–850

    Article  Google Scholar 

  • Bowen BM (1996) Example of reduced turbulence during thunderstorm outflows. J Appl Meteorol 35(6):1028–1032

    Article  Google Scholar 

  • Champagne FH, Friehe CA, LaRue JC, Wynagaard JC (1977) Flux measurements, flux estimation techniques, and fine-scale turbulence measurements in the unstable surface layer over land. J Atmos Sci 34(3):515–530

    Article  Google Scholar 

  • Darby LS, Banta RM, Brewer WA, Neff WD, Marchbanks RD, McCarty BJ, Senff CJ, White AB, Angevine WM, Williams EJ (2002) Vertical variations in O3 concentrations before and after a gust front passage. J Geophys Res 107(D13):ACH-9

  • Droegemeier KK, Wilhelmson RB (1987) Numerical simulation of thunderstorm outflow dynamics part I: outflow sensitivity experiments and turbulence dynamics. J Atmos Sci 44(8):1180–1210

    Article  Google Scholar 

  • Du Y, Chen G (2019) Heavy rainfall associated with double low-level jets over Southern China. Part II: convection initiation. Mon Weather Rev 147(2):543–565

  • Eckermann SD, Vincent RA (1993) VHF radar observations of gravity-wave production by cold fronts over southern Australia. J Atmos Sci 50(6):785–806

    Article  Google Scholar 

  • Fritts DC, Nastrom GD (1992) Sources of mesoscale variability of gravity waves. Part II: frontal, convective, and jet stream excitation. J Atmos Sci 49(2):111–127

  • Guest FM, Reeder MJ, Marks CJ, Karoly DJ (2000) Inertia-gravity waves observed in the lower stratosphere over Macquarie Island. J Atmos Sci 57(5):737–752

    Article  Google Scholar 

  • Hoecker WL (1963) Three southerly low-level jet systems delineated by the weather bureau special pibal network of 1961. Mon Weather Rev 91:573–582

    Article  Google Scholar 

  • Hoffmann L, Xue X, Alexander MJ (2013) A global view of stratospheric gravity wave hotspots located with Atmospheric Infrared Sounder observations. J Geophys Res Atmos 118(2):416–434

    Article  Google Scholar 

  • Hunt JCR, Durbin PA (1999) Perturbed vortical layers and shear sheltering. Fluid Dyn Res 24(6):375–404

    Article  Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press

    Book  Google Scholar 

  • Kallistratova MA, Kouznetsov RD, Kramar VF, Kuznetsov DD (2013) Profiles of wind speed variances within nocturnal low-level jets observed with a sodar. J Atmos Ocean Technol 30(9):1970–1977

    Article  Google Scholar 

  • Kolmogorov AN (1991) The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Proc R Soc Lond Ser A Math Phys Sci 434(1890):9–13

    Google Scholar 

  • Kumer VM, Reuder J, Dorninger M, Zauner R, Grubišić V (2016) Turbulent kinetic energy estimates from profiling wind LiDAR measurements and their potential for wind energy applications. Renew Energy 99:898–910

    Article  Google Scholar 

  • Lott F, Teitelbaum H (1993) Linear unsteady mountain waves. Tellus A 45(3):201–220

    Article  Google Scholar 

  • Lu SS, Willmarth WW (1973) Measurements of the structure of the Reynolds stress in a turbulent boundary layer. J Fluid Mech 60(3):481–511

    Article  Google Scholar 

  • Mitchell MJ, Arritt RW, Labas K (1995) A climatology of the warm season great plains low-level jet using wind profiler observations. Weather Forecast 10(3):576–591

    Article  Google Scholar 

  • Nakagawa H, Nezu I (1977) Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J Fluid Mech 80(1):99–128

    Article  Google Scholar 

  • Plougonven R, Teitelbaum H (2003) Comparison of a large-scale inertia-gravity wave as seen in the ECMWF analyses and from radiosondes. Geophys Res Lett 30(18):1–4

    Article  Google Scholar 

  • Prabha TV, Leclerc MY, Karipot A, Hollinger DY, Mursch-Radlgruber E (2008) Influence of nocturnal low-level jets on eddy-covariance fluxes over a tall forest canopy. Boundary-Layer Meteorol 126(2):219–236

    Article  Google Scholar 

  • Raupach MR (1981) Conditional statistics of Reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108:363–382

    Article  Google Scholar 

  • Raupach M, Finnigan JJ, Brunet Y (1996) Coherent eddies and turbulence in vegetation canopies: the mixing-layer analogy. Boundary-Layer Meteorol 25:351–382

    Article  Google Scholar 

  • Rotach MW, Calanca P (2015) Boundary layer (atmospheric) and air pollution microclimate. Encycl Atmos Sci 1:258–264

    Google Scholar 

  • Ruchith RD, Raj PE (2015) Features of nocturnal low level jet (NLLJ) observed over a tropical Indian station using high resolution Doppler wind lidar. J Atmos Sol Terr Phys 123:113–123

    Article  Google Scholar 

  • Sandu I, van Niekerk A, Shepherd TG, Vosper SB, Zadra A, Bacmeister J, Beljaars A, Brown AR, Dörnbrack A, McFarlane N, Pithan F (2019) Impacts of orography on large-scale atmospheric circulation. NPJ Clim Atmos Sci 2(1):1–8

    Article  Google Scholar 

  • Shaw RH, Tavangar J, Ward DP (1983) Structure of the Reynolds stress in a canopy layer. J Appl Meteorol Climatol 22(11):1922–1931

    Article  Google Scholar 

  • Smedman AS, Högström U, Hunt JC (2004) Effects of shear sheltering in a stable atmospheric boundary layer with strong shear. Q J R Meteorol Soc 130(596):31–50

    Article  Google Scholar 

  • Soufflet C, Lott F, Damiens F (2019) Trapped mountain waves with a critical level just below the surface. Q J R Meteorol Soc 145:1503–1514

    Article  Google Scholar 

  • Stensrud DJ (1996) Importance of low-level jets to climate: a review. J Clim 9(8):1698–1711

    Article  Google Scholar 

  • Storm B, Dudhia J, Basu S, Swift A, Giammanco I (2009) Evaluation of the weather research and forecasting model on forecasting low-level jets: implications for wind energy. Wind Energy 12(1):81–90

    Article  Google Scholar 

  • Taylor GI (1935) Diffusion in a turbulent air stream. Proc R Soc Lond Ser A Math Phys Sci 151(873):465–78

    Google Scholar 

  • Teixeira MA (2014) The physics of orographic gravity wave drag. Front Phys 2(43):1–24

    Google Scholar 

  • Tennekes H, Lumley JL (1972) A first course in turbulence. MIT Press

  • Tepper M (1950) A proposed mechanism of squall lines: the pressure jump line. J Meteorol 7(1):21–29

    Article  Google Scholar 

  • Tsuda T (2014) Characteristics of atmospheric gravity waves observed using the MU (Middle and Upper atmosphere) radar and GPS (Global Positioning System) radio occultation. Proc Jpn Acad Ser B 90(1):12–27

    Article  Google Scholar 

  • Uccellini LW, Koch SE (1987) The synoptic setting and possible energy sources for mesoscale wave disturbances. Mon Weather Rev 115(3):721–729

    Article  Google Scholar 

  • Vaughan G, Hooper D (2015) Mesosphere–stratosphere–troposphere and stratosphere–troposphere radars and wind profilers. Encycl Atmos Sci Sec Edn 1:29–437

    Google Scholar 

  • Vera C, Baez J, Douglas M, Emmanuel CB, Marengo J, Meitin J, Nicolini M, Nogues-Paegle J, Paegle J, Penalba O, Salio P (2006) The South American low-level jet experiment. Bull Am Meteorol Soc 87(1):63–78

    Article  Google Scholar 

  • Wei W, Zhang HS, Schmitt FG, Huang YX, Cai XH, Song Y, Huang X, Zhang H (2017) Investigation of turbulence behaviour in the stable boundary layer using arbitrary-order Hilbert spectra. Boundary-Layer Meteorol 163(2):311–326

    Article  Google Scholar 

  • Whiteman CD, Bian X, Zhong S (1997) Low-level jet climatology from enhanced rawinsonde observations at a site in the southern Great Plains. J Appl Meteorol 36(10):1363–1376

    Article  Google Scholar 

  • Zhong S, Fast JD, Bian X (1996) A case study of the great plains low-level jet using wind profiler network data and a high-resolution mesoscale model. Mon Weather Rev 124(5):785–806

    Article  Google Scholar 

Download references

Acknowledgements

The EMPATIE project was funded by the Institut de Recherche Pluridisciplinaire en Sciences de l’Environnement (IRePSE) and the Pôle de Recherche Environnement, Milieux Littoraux et Marins (EMLM) of Université du Littoral Côte d’Opale.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sayahnya Roy.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roy, S., Sentchev, A., Schmitt, F.G. et al. Impact of the Nocturnal Low-Level Jet and Orographic Waves on Turbulent Motions and Energy Fluxes in the Lower Atmospheric Boundary Layer. Boundary-Layer Meteorol 180, 527–542 (2021). https://doi.org/10.1007/s10546-021-00629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-021-00629-x

Keywords

  • Lidar measurements
  • Low-level jet
  • Quadrant analysis
  • Sonic anemometer
  • Turbulent eddies