Skip to main content

Numerical Prediction of the Boundary-Layer Flow Over the Bolund Hill: Assessment of Turbulence Models and Advection Schemes

Abstract

The WindStation software package is applied to simulate the wind field over the Bolund hill. The standard, ReNormalization Group (RNG), realizable, and limited-length k−ε turbulence models are tested, along with the quadratic upstream interpolation for convective kinetics (QUICK) and hybrid advection schemes. Comparisons with experimental results are made for the speed-up and turbulence kinetic energy (TKE) increase. The adopted mesh is Cartesian uniform in the horizontal plane and terrain following with a variable expansion factor in the vertical direction. The QUICK advection scheme leads to better agreement with the experimental data than the hybrid scheme, in particular for the TKE increase. The RNG and standard k−ε turbulence models show the best performance for speed-up and for TKE increase, respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Apsley D, Castro I (1997) A limited-length-scale k−ε model for the neutral and stably-stratified atmospheric boundary layer. Boundary-Layer Meteorol 83:75–78

    Google Scholar 

  2. Barnard JC (1991) An evaluation of three models designed for siting wind turbines in areas of complex terrain. Sol Energy 46:288–294

    Google Scholar 

  3. Bechmann A (2006) Large-eddy simulation of atmospheric flow over complex terrain. Risø-PhD-28(EN)

  4. Bechmann A, Sørensen NN (2010) Hybrid RANS/LES method for wind flow over complex terrain. Wind Energy 13:36–50

    Google Scholar 

  5. Bechmann A, Sørensen NN, Berg J, Mann J, Réthoré P-E (2011) The Bolund experiment, part II: blind comparison of microscale flow models. Boundary-Layer Meteorol 141(2):245–271

    Google Scholar 

  6. Beljaars ACM, Walmsley JL, Taylor PA (1987) A mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography. Boundary-Layer Meteorol 38:273–303

    Google Scholar 

  7. Berg J, Mann J, Bechmann A, Courtney M, Jørgensen H (2011) The Bolund experiment, part I: flow over a steep, three-dimensional hill. Boundary-Layer Meteorol 141(2):219–243

    Google Scholar 

  8. Carruthers DJ, Hunt JCR, Weng WS (1988) A computational model of stratified turbulent air flow over hills—FLOWSTAR I. In: Zanetti P (ed) Proceedings of ENVIROSOFT: computer techniques in environmental studies. Springer, New York, pp 481–492

  9. Castro FA, Palma JMLM, Silva Lopes A (2003) Simulation of the Askervein flow. Part 1: Reynolds averaged Navier-Stokes equations (k–ε turbulence model). Boundary-Layer Meteorol 107:501–530

    Google Scholar 

  10. Cavar D, Réthoré P-E, Bechmann A, Sørensen NN, Martinez B, Zahle F, Berg J, Kelly MC (2016) Comparison of OpenFOAM and EllipSys3D for neutral atmospheric flow over complex terrain. Wind Energy Sci 1:55–70

    Google Scholar 

  11. Chaudhari A, Hellsten A, Hamalainen J (2016) Full-scale experimental validation of large-eddy simulation of wind flows over complex terrain: the Bolund hill. Adv Meteorol, Article ID 9232759

  12. Chaviaropoulos PK, Douvikas DI (1998) Mean flow field simulations over complex terrain using a 3D Reynolds average Navier Stokes solver. In: Proceedings of the 98 conference ECCOMAS, Athens

  13. Conan B, Chaudhari A, Aubrun S, van Beeck J, Hamalainen J, Hellsten A (2016) Experimental and numerical modelling of flow over complex terrain: the Bolund hill. Boundary-Layer Meteorol 158:183–208

    Google Scholar 

  14. Diebold M, Higgins C, Fang J, Bechmann A, Parlange MB (2013) Flow over hills: a large-eddy simulation of the Bolund case. Boundary-Layer Meteorol 148(1):177–194

    Google Scholar 

  15. Djilali N, Gartshore I, Salcudean M (1989) Calculation of convective heat transfer in recirculating turbulent flows using various near-wall turbulence models. Numer Heat Transf Part A 16:189–212

    Google Scholar 

  16. Finardi S, Brusasca G, Morselli MG, Trombetti F, Tampieri F (1993) Boundary-layer flow over analytical two-dimensional hills: a systematic comparison of different models with wind tunnel data. Boundary-Layer Meteorol 63:259–291

    Google Scholar 

  17. Forthofer JM, Shannon K, Butler B (2009) Simulating diurnally driven slope winds with WindNinja. In: Brown TJ, Potter BE (eds) Proceedings of 8th symposium on fire and forest meteorological society, Kalispell, MT, USA. American Meteorological Society: Boston, MA, USA

  18. Forthofer JM, Butler BW, Wagenbrenner NS (2014) A comparison of three approaches for simulating fine-scale surface winds in support of wildland fire management. Part I: model formulation and comparison against measurements. Int J Wildland Fire 23(7):969–981

    Google Scholar 

  19. Golaz JC, Doyle JD, Wang S (2009) One-way nested large-eddy simulation over the Askervein hill. J Adv Model Earth Syst 1(3):1–6

    Google Scholar 

  20. Hargreaves DM, Wright NG (2007) On the use of the k-ε model in commercial CFD software to model the neutral atmospheric boundary layer. J Wind Eng Ind Aerodyn 95:355–369

    Google Scholar 

  21. Hayase T, Humphrey JAC, Greif R (1992) A consistently formulated quick scheme for fast and stable convergence using finite-volume iterative calculation procedures. J Comput Phys 98:108–118

    Google Scholar 

  22. Hutchinson BR, Raithby GD (1996) A multigrid method based on the additive correction strategy. Numer Heat Transf 9(5):511–537

    Google Scholar 

  23. Jackson PS, Hunt JCR (1975) Turbulent wind flow over a low hill. Q J R Meteorol Soc 101:929–955

    Google Scholar 

  24. Jones WP, Launder BE (1972) The prediction of laminarization with a two-equation model of turbulence. Int J Heat Mass Transf 15:301–314

    Google Scholar 

  25. Kim HG, Patel VC, Lee CM (2000) Numerical simulation of wind flow over hilly terrain. J Wind Eng Ind Aerodyn 87(1):45–60

    Google Scholar 

  26. Koblitz T, Bechmann A, Sogachev A, Sørensen N, Réthoré PE (2013) Computational fluid dynamics model of stratified atmospheric boundary-layer flow. Wind Energy 18:75–89

    Google Scholar 

  27. Launder BE, Spalding DB (1972) Mathematical models of turbulence. Academic Press, London and New York. ISBN 0-12-438050-6

  28. Launder BE, Spalding DB (1974) The numerical computation of turbulent flows. Comput Methods Appl Mech Eng 3:269–289

    Google Scholar 

  29. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19(1):59–98

    Google Scholar 

  30. Lopes AMG (2003) WindStation—a software for the simulation of atmospheric flows over complex topography. Environ Modell Softw 18(1):81–96

    Google Scholar 

  31. Lopes AMG (2018) WindStation user’s manual. www.menzio.de

  32. Lopes AS, Palma JLML, Castro FA (2007) Simulation of the Askervein flow. Part 2: large-eddy simulations. Boundary-Layer Meteorol 125(1):85–108

    Google Scholar 

  33. Ma Y, Liu H (2017) Large-eddy simulations of atmospheric flows over complex terrain using the immersed-boundary method in the weather research and forecasting model. Boundary-Layer Meteorol 165:421–445

    Google Scholar 

  34. Majumdar S (1988) Role of underrelaxation in momentum interpolation for calculation of flow with nonstaggered grids. Numer Heat Transf 13(1):125–132

    Google Scholar 

  35. Mason PJ, Sykes RI (1979) Flow over an isolated hill of moderate slope. Q J R Meteorol Soc 105:383–395

    Google Scholar 

  36. Michelsen JA (1992) Basis3D-a platform for development of multiblock PDE solvers, Report AFM

  37. Mortensen NG, Landberg L, Troen I, Petersen EL (1993) Wind atlas analysis and application program (WASP). Riso National Laboratory, Roskilde

    Google Scholar 

  38. Norris SE, Richards PF (2010) Appropriate boundary conditions for computational wind engineering models revisited. In: Proceedings of the Fifth international symposium on computational wind engineering (CWE2010), Chapel Hill, North Carolina

  39. OpenFOAM-Foundation (2013) OpenFOAM: the open source CFD toolbox user guide version 2.2.2. OpenFOAM–Foundation

  40. Prospathopoulos J, Politis E, Chaviaropoulos P (2012) Application of a 3D RANS solver on the complex hill of Bolund and assessment of the wind flow predictions. J Wind Eng Ind Aerodyn 107–108:149–159

    Google Scholar 

  41. Raithby GD, Stubley GD, Taylor PA (1987) The Askervein hill project: a finite control volume prediction of three-dimensional flows over the hill. Boundary-Layer Meteorol 39:247–267

    Google Scholar 

  42. Rhie CM, Chow WL (1983) Numerical study of the turbulent flow past an airfoil with trailing edge separation. AIAA J 21(11):1525–1532

    Google Scholar 

  43. Ross DG, Smith IN, Manins PC, Fox DG (1988) Diagnostic wind field modeling for complex terrain: model development and testing. J Appl Meteorol 27:785–796

    Google Scholar 

  44. Salmon R, Teunissen H, Mickle R, Taylor P (1988) The kettles hill project: field observations, wind-tunnel simulations and numerical model predictions for flow over a low hill. Boundary-Layer Meteorol 43:309–342

    Google Scholar 

  45. Scire JS, Robe FR, Fernau ME, Insley EM, Yamartino RJ (2000) A user’s guide for the CALMET meteorological model (Version 5). Earth Tech Inc, Concord

    Google Scholar 

  46. Shen WZ, Michelsen JA, Sørensen NN, Sørensen JN (2003) An improved SIMPLEC method on collocated grids for steady and unsteady flow computations. Numer Heat Transf Part B 43:221–239

    Google Scholar 

  47. Sørensen NN (1995) General purpose flow solver applied to flow over hills. Technical report, Risø

  48. Sørensen NN (1998) HypGrid2D a 2-D mesh generator. Technical report, Risø DTU, Roskilde, Denmark

  49. Spalding DB (1972) A novel finite difference formulation for differential expressions involving both first and second derivatives. Int J Numer Methods Eng 4(2):551–559

    Google Scholar 

  50. Sumner J, Watters CS, Masson C (2010) CFD inwind energy: the virtual, multiscale wind tunnel. Energies 3(5):989–1013

    Google Scholar 

  51. Taylor PA, Teunissen HW (1987) The Askervein hill project: overview and background data. Boundary-Layer Meteorol 39:15–39

    Google Scholar 

  52. Traci RM, Phillips GT, Patnail PC, Freeman BE (1977) Development of a wind energy methodology. US Dept. Energy, Report RLO/2440–11

  53. Troen I, Mortensen NG, Petersen EL (1988) WASP wind atlas analysis and application programme. User's Guide, Risø National Lab., Roskilde, Denmark

  54. Van Doormaal JP, Raithby GD (1984) Enhancements of the simple method for predicting incompressible fluid flows. Numer Heat Transf 7:147–163

    Google Scholar 

  55. Versteeg HK, Malalasekera W (2007) An introduction to computational fluid dynamics: the finite method. Pearson Education Ltd, Harlow

    Google Scholar 

  56. Vuorinen V, Chaudhari A, Keskinen JP (2015) Large-eddy simulation in a complex hill terrain enabled by a compact fractional step OpenFOAM® solver. Adv Eng Softw 79:70–80

    Google Scholar 

  57. Wagenbrenner NS, Forthofer JM, Page WG, Butler BW (2019) Development and evaluation of a Reynolds-averaged Navier-Stokes solver in WindNinja for operational wildland fire applications. Atmosphere 10(11):672

    Google Scholar 

  58. Walmsley JL, Salmon JR, Taylor PA (1982) On the application of a model of boundary layer flow over low hills to real terrain. Boundary-Layer Meteorol 23:17–46

    Google Scholar 

  59. Walmsley JL, Troen IB, Lalas DP, Mason PJ (1990) Surface-layer flow in complex terrain: comparison of models and full-scale observations. Boundary-Layer Meteorol 52:259–281

    Google Scholar 

  60. Wilson KG, Kogut J (1974) The renormalization group and the ε expansion. Phys Rep 12:75–199

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. G. Lopes.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lopes, A.M.G., Duarte, N.G.L., Sánchez, O.H. et al. Numerical Prediction of the Boundary-Layer Flow Over the Bolund Hill: Assessment of Turbulence Models and Advection Schemes. Boundary-Layer Meteorol 180, 27–52 (2021). https://doi.org/10.1007/s10546-021-00613-5

Download citation

Keywords

  • Advection schemes
  • Bolund hill
  • Computational fluid dynamics
  • Turbulence models