Skip to main content
Log in

The O’KEYPS Equation and 60 Years Beyond

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Some 60 years ago, six researchers obtained a semi-empirical equation that describes how the stability correction function for the mean velocity profile (\(\phi _\mathrm{m}\)) in the atmospheric surface layer varies with the stability parameter—the famous O’KEYPS equation. Their derivations are essentially based on interpolation of the turbulent eddy viscosity between neutral and convective conditions. Comparing the O’KEYPS equation with new theoretical developments—such as phenomenological and cospectral budget models—suggests that Heisenberg’s eddy viscosity provides a unifying framework for interpreting the behaviour of \(\phi _\mathrm{m}\). The empirical coefficient in the O’KEYPS equation, which is on the order of 10 based on data fitting to observations, is found to be primarily linked to the increase of the size of turbulent eddies as instability increases. The ratio of the sizes of turbulent eddies under convective and neutral conditions is on the order of \(1{/}\kappa \), where \(\kappa \) is the von Kármán constant, and is modulated by the turbulent Prandtl number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ali SZ, Dey S (2018) Impact of phenomenological theory of turbulence on pragmatic approach to fluvial hydraulics. Phys Fluids 30(4):045,105

    Google Scholar 

  • Andreas E, Hicks BB (2002) Comments on “critical test of the validity of Monin–Obukhov similarity during convective conditions”. J Atmos Sci 59(17):2605–2607

    Google Scholar 

  • Banerjee T, Katul G (2013) Logarithmic scaling in the longitudinal velocity variance explained by a spectral budget. Phys Fluids 25(125):106

    Google Scholar 

  • Banerjee T, Katul G, Salesky S, Chamecki M (2015) Revisiting the formulations for the longitudinal velocity variance in the unstable atmospheric surface layer. Q J R Meteorol Soc 141(690):1699–1711

    Google Scholar 

  • Banerjee T, Li D, Juang JY, Katul G (2016) A spectral budget model for the longitudinal turbulent velocity in the stable atmospheric surface layer. J Atmos Sci 73(1):145–166

    Google Scholar 

  • Bou-Zeid E, Vercauteren N, Parlange M, Meneveau C (2008) Scale dependence of subgrid-scale model coefficients: an a priori study. Phys Fluids 20(11):115106

    Google Scholar 

  • Brutsaert W, Yeh GT (1970) A power wind law for turbulent transfer computations. Water Resour Res 6(5):1387–1391

    Google Scholar 

  • Businger J (1959) A generalization of the mixing-length concept. J Meteorol 16(5):516–523

    Google Scholar 

  • Businger J (1961) On the relation between the spectrum of turbulence and the diabatic wind profile. J Geophys Res 66(8):2405–2409

    Google Scholar 

  • Businger J (1973) A note on free convection. Boundary-Layer Meteorol 4(1–4):323–326

    Google Scholar 

  • Businger JA (1988) A note on the Businger–Dyer profiles. Boundary-Layer Meteorol 42:145–151

    Google Scholar 

  • Businger JA, Yaglom AM (1971) Introduction to Obukhov’s paper on ‘Turbulence in an atmosphere with a non-uniform temperature’. Boundary-Layer Meteorol 2:3–6

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28(2):181–191

    Google Scholar 

  • Carper MA, Porté-Agel F (2004) The role of coherent structures in subfilter-scale dissipation of turbulence measured in the atmospheric surface layer. J Turbul 5:32–32

    Google Scholar 

  • Chauhan K, Hutchins N, Monty J, Marusic I (2013) Structure inclination angles in the convective atmospheric surface layer. Boundary-Layer Meteorol 147:1–10

    Google Scholar 

  • Dai C, Wang Q, Kalogiros J, Lenschow D, Gao Z, Zhou M (2014) Determining boundary-layer height from aircraft measurements. Boundary-Layer Meteorol 152(3):277–302

    Google Scholar 

  • Deacon E (1949) Vertical diffusion in the lowest layers of the atmosphere. Q J R Meteorol Soc 75(323):89–103

    Google Scholar 

  • Deardorff JW (1970) Convective velocity and temperature scales for the unstable planetary boundary layer and for Rayleigh convection. J Atmos Sci 27(8):1211–1213

    Google Scholar 

  • Dop H, Verver G (2001) Countergradient transport revisited. J Atmos Sci 58(15):2240–2247

    Google Scholar 

  • Dyer A (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7(3):363–372

    Google Scholar 

  • Dyer A, Hicks B (1970) Flux-gradient relationships in the constant flux layer. Q J R Meteorol Soc 96(410):715–721

    Google Scholar 

  • Ellison T (1957) Turbulent transport of heat and momentum from an infinite rough plane. J Fluid Mech 2(5):456–466

    Google Scholar 

  • Ertel H (1942) Ein neuer hydrodynamischer wirbelsatz. Meteorol Z 59:277–281

    Google Scholar 

  • Etling D, Brown R (1993) Roll vortices in the planetary boundary layer: a review. Boundary-Layer Meteorol 65(3):215–248

    Google Scholar 

  • Finn D, Clawson KL, Eckman RM, Liu H, Russell ES, Gao Z, Brooks S (2016a) Project Sagebrush: revisiting the value of the horizontal plume spread parameter y. J Appl Meteorol Clim 55(6):1305–1322

    Google Scholar 

  • Finn D, Reese B, Butler B, Wagenbrenner N, Clawson K, Rich J, Russell E, Gao Z, Liu H (2016b) Evidence for gap flows in the Birch Creek Valley, Idaho. J Atmos Sci 73(12):4873–4894

    Google Scholar 

  • Fleagle RG, Businger JA (1981) An introduction to atmospheric physics. Academic Press, New York

    Google Scholar 

  • Garratt JR (1994) The atmospheric boundary layer. Cambridge University Press, UK

  • Gioia G, Guttenberg N, Goldenfeld N, Chakraborty P (2010) Spectral theory of the turbulent mean-velocity profile. Phys Rev Lett 105:184501

    Google Scholar 

  • Heisenberg W (1948) Zur statistischen theorie der turbulenz. Z Physik 124(7):628–657

    Google Scholar 

  • Herbet F, Panhans WG (1979) Theoretical studies of the parameterization of the non-neutral surface boundary layer. Boundary-Layer Meteorol 16(2):155–167

    Google Scholar 

  • Hicks BB (1978) Some limitations of dimensional analysis and power laws. Boundary-Layer Meteorol 14(4):567–569

    Google Scholar 

  • Hicks BB (1981) An examination of turbulence statistics in the surface boundary layer. Boundary-Layer Meteorol 21(3):389–402

    Google Scholar 

  • Hicks BB (1985) Behavior of turbulence statistics in the convective boundary layer. J Clim Appl Meteorol 24(6):607–614

  • Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 1–2:55–78

    Google Scholar 

  • Högström U (1996) Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer Meteorol 78(3–4):215–246

    Google Scholar 

  • Holtslag A, Boville B (1993) Local versus nonlocal boundary-layer diffusion in a global climate model. J Clim 6(10):1825–1842

    Google Scholar 

  • Holtslag A, Moeng CH (1991) Eddy diffusivity and countergradient transport in the convective atmospheric boundary layer. J Atmos Sci 48(14):1690–1698

    Google Scholar 

  • Hommema SE, Adrian RJ (2003) Packet structure of surface eddies in the atmospheric boundary layer. Boundary-Layer Meteorol 106(1):147–170

    Google Scholar 

  • Hutchins N, Chauhan K, Marusic I, Monty J, Klewicki J (2012) Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory. Boundary-Layer Meteorol 145(2):273–306

    Google Scholar 

  • Johansson C, Smedman AS, Högström U, Brasseur JG, Khanna S (2001) Critical test of the validity of Monin–Obukhov similarity during convective conditions. J Atmos Sci 58(12):1549–1566

    Google Scholar 

  • Kader BA, Yaglom AM (1990) Mean fields and fluctuation moments in unstably stratified turbulent boundary-layers. J Fluid Mech 212:637–662

    Google Scholar 

  • Kaimal J, Finnigan J (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York

    Google Scholar 

  • Katul G (2019) The anatomy of large-scale motion in atmospheric boundary layers. J Fluid Mech 858:1–4

    Google Scholar 

  • Katul G, Konings A, Porporato A (2011) Mean velocity profile in a sheared and thermally stratified atmospheric boundary layer. Phys Rev Lett 107:268502

    Google Scholar 

  • Katul G, Li D, Chamecki M, Bou-Zeid E (2013a) Mean scalar concentration profile in a sheared and thermally stratified atmospheric surface layer. Phys Rev E 87(2):023004

    Google Scholar 

  • Katul G, Porporato A, Manes C, Meneveau C (2013b) Co-spectrum and mean velocity in turbulent boundary layers. Phys Fluids 25(091):702

    Google Scholar 

  • Katul G, Porporato A, Shah S, Bou-Zeid E (2014) Two phenomenological constants explain similarity laws in stably stratified turbulence. Phys Rev E 89(1):023007

    Google Scholar 

  • Katul G, Li D, Manes C (2019) A primer on turbulence in hydrology and hydraulics: the power of dimensional analysis. WIRES Water 6(2):e1336

    Google Scholar 

  • Katul GG, Manes C (2014) Cospectral budget of turbulence explains the bulk properties of smooth pipe flow. Phys Rev E 90(063):008. https://doi.org/10.1103/PhysRevE.90.063008

    Article  Google Scholar 

  • Kazansky A, Monin A (1956) Turbulence in the inversion layer near the surface. Izv Akad Nauk SSSR Ser Geofiz 1:79–86

    Google Scholar 

  • Kazansky A, Monin A (1958) On the turbulent regime in the near surface layer of air at unstable stratification. Izv Akad Nauk SSSR Ser Geofiz 6:741–751

    Google Scholar 

  • Khanna S, Brasseur JG (1997) Analysis of Monin–Obukhov similarity from large-eddy simulation. J Fluid Mech 345:251–286

    Google Scholar 

  • Klipp CL, Mahrt L (2004) Flux-gradient relationship, self-correlation and intermittency in the stable boundary layer. Q J R Meteorol Soc 130(601):2087–2103

    Google Scholar 

  • Kolmogorov A (1941) Dissipation of energy under locally isotropic turbulence. Dokl Akad Nauk SSSR 32:16–18

    Google Scholar 

  • Lan C, Liu H, Li D, Katul GG, Finn D (2018) Distinct turbulence structures in stably stratified boundary layers with weak and strong surface shear. J Geophys Res Atmos 123(15):7839–7854

    Google Scholar 

  • Lan C, Liu H, Katul GG, Li D, Finn D (2019) Large eddies regulate turbulent flux gradients in coupled stable boundary layers. Geophys Res Lett 46(11):6090–6100

    Google Scholar 

  • Laubach J, McNaughton KG (2009) Scaling properties of temperature spectra and heat-flux cospectra in the surface friction layer beneath an unstable outer layer. Boundary-Layer Meteorol 133(2):219–252

    Google Scholar 

  • Li D (2016) Revisiting the subgrid-scale Prandtl number for large-eddy simulation. J Fluid Mech 802:R2. https://doi.org/10.1017/jfm.2016.472

    Article  Google Scholar 

  • Li D (2019) Turbulent Prandtl number in the atmospheric boundary layer: Where are we now? Atmos Res 216:86–105

    Google Scholar 

  • Li D, Bou-Zeid E (2011) Coherent structures and the dissimilarity of turbulent transport of momentum and scalars in the unstable atmospheric surface layer. Boundary-Layer Meteorol 140(2):243–262

    Google Scholar 

  • Li D, Katul GG (2017) On the linkage between the \(k^{-5/3}\) spectral and \(k^{-7/3}\) cospectral scaling in high-Reynolds number turbulent boundary layers. Phys Fluids 29(6):065,108

    Google Scholar 

  • Li D, Bou-Zeid E, de Bruin H (2012a) Monin–Obukhov similarity functions for the structure parameters of temperature and humidity. Boundary-Layer Meteorol 145(1):45–67

    Google Scholar 

  • Li D, Katul G, Bou-Zeid E (2012b) Mean velocity and temperature profiles in a sheared diabatic turbulent boundary layer. Phys Fluids 24(10):105105

    Google Scholar 

  • Li D, Katul G, Bou-Zeid E (2015a) Turbulent energy spectra and cospectra of momentum and heat fluxes in the stable atmospheric surface layer. Boundary-Layer Meteorol 157(1):1–21

    Google Scholar 

  • Li D, Katul GG, Zilitinkevich SS (2015b) Revisiting the turbulent Prandtl number in an idealized atmospheric surface layer. J Atmos Sci 72(6):2394–2410

    Google Scholar 

  • Li D, Katul G, Gentine P (2016a) The \(k^{-1}\) scaling of air temperature spectra in atmospheric surface layer flows. Q J R Meteorol Soc 142(694):496–505

    Google Scholar 

  • Li D, Salesky S, Banerjee T (2016b) Connections between the Ozmidov scale and mean velocity profile in stably stratified atmospheric surface layers. J Fluid Mech 797:R3. https://doi.org/10.1017/jfm.2016.311

    Article  Google Scholar 

  • Li D, Katul GG, Liu H (2018a) Intrinsic constraints on asymmetric turbulent transport of scalars within the constant flux layer of the lower atmosphere. Geophys Res Lett 45(4):2022–2030

    Google Scholar 

  • Li Q, Gentine P, Mellado JP, McColl KA (2018b) Implications of nonlocal transport and conditionally averaged statistics on Monin–Obukhov similarity theory and Townsend’s attached eddy hypothesis. J Atmos Sci 75(10):3403–3431

    Google Scholar 

  • Liu HY, Bo TL, Liang YR (2017) The variation of large-scale structure inclination angles in high Reynolds number atmospheric surface layers. Phys Fluids 29(3):035,104

    Google Scholar 

  • Liu Y, Mamtimin A, Huo W, Yang X, Liu X, Yang F, He Q (2016) Nondimensional wind and temperature profiles in the atmospheric surface layer over the hinterland of the Taklimakan Desert in China. Adv Meteorol. https://doi.org/10.1155/2016/9325953

    Article  Google Scholar 

  • Lumley JL, Panofsky HA (1964) The structure of atmospheric turbulence. Wiley, New York

    Google Scholar 

  • Maronga B, Reuder J (2017) On the formulation and universality of Monin–Obukhov similarity functions for mean gradients and standard deviations in the unstable surface layer: results from surface-layer-resolving large-eddy simulations. J Atmos Sci 74(4):989–1010

    Google Scholar 

  • McColl KA, van Heerwaarden CC, Katul GG, Gentine P, Entekhabi D (2017) Role of large eddies in the breakdown of the Reynolds analogy in an idealized mildly unstable atmospheric surface layer. Q J R Meteorol Soc 143(706):2182–2197

    Google Scholar 

  • McNaughton KG, Clement RJ, Moncrieff JB (2007) Scaling properties of velocity and temperature spectra above the surface friction layer in a convective atmospheric boundary layer. Nonlinear Process Geophys 14(3):257–271. https://doi.org/10.5194/npg-14-257-2007

    Article  Google Scholar 

  • Monin A, Obukhov A (1954) Basic laws of turbulent mixing in the ground layer of the atmosphere. Trudy Akad Nauk SSSR Geofiz Inst 151:163–187

    Google Scholar 

  • Monin A, Yaglom A (1971) Statistical fluid mechanics, vol 1. MIT Press, Cambridge

    Google Scholar 

  • Naito K (1964) Some remarks on the Monin–Obukhov function in the atmosphere near the ground. J Meteorol Soc Jpn Ser II 42(1):53–64

    Google Scholar 

  • Obukhov A (1946) Turbulence in thermally inhomogeneous atmosphere. Trudy Inta Teoret Geofiz Akad Nauk SSSR 1:95–115

    Google Scholar 

  • Obukhov A (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol 2(1):7–29

    Google Scholar 

  • Pandolfo JP (1966) Wind and temperature profiles for constant-flux boundary layers in lapse conditions with a variable eddy conductivity to eddy viscosity ratio. J Atmos Sci 23(5):495–502

    Google Scholar 

  • Panofsky H (1961) An alternative derivation of the diabatic wind profile. Q J R Meteorol Soc 87(371):109–110

    Google Scholar 

  • Panofsky H, Blackadar A, McVehil G (1960) The diabatic wind profile. Q J R Meteorol Soc 86(369):390–398

    Google Scholar 

  • Panofsky HA, Tennekes H, Lenschow DH, Wyngaard J (1977) The characteristics of turbulent velocity components in the surface layer under convective conditions. Boundary-Layer Meteorol 11(3):355–361

    Google Scholar 

  • Pasquill F (1972) Some aspects of boundary layer description. Q J R Meteorol Soc 98(417):469–494

    Google Scholar 

  • Patton EG, Sullivan PP, Shaw RH, Finnigan JJ, Weil JC (2016) Atmospheric stability influences on coupled boundary layer and canopy turbulence. J Atmos Sci 73(4):1621–1647

    Google Scholar 

  • Pirozzoli S, Bernardini M, Verzicco R, Orlandi P (2017) Mixed convection in turbulent channels with unstable stratification. J Fluid Mech 821:482–516

    Google Scholar 

  • Pope S (2000) Turbulent flows. Cambridge University Press, Cambridge

    Google Scholar 

  • Prandtl L (1932) Meteorogische an wendung der stromungslehre. Beitr Phys Atomos 19:188–202

    Google Scholar 

  • Priestley C (1954) Convection from a large horizontal surface. Aust J Phys 7(1):176–201

    Google Scholar 

  • Priestley C (1955) Free and forced convection in the atmosphere near the ground. Q J R Meteorol Soc 81(348):139–143

    Google Scholar 

  • Priestley C (1957) Convection from the earth’s surface. Proc R Soc Lond Ser A 238(1214):287–304

    Google Scholar 

  • Priestley C (1959) Turbulent transfer in the lower atmosphere. University of Chicago Press, Chicago

    Google Scholar 

  • Priestley C, Swinbank W (1947) Vertical transport of heat by turbulence in the atmosphere. Proc R Soc Lond Ser A 189(1019):543–561

    Google Scholar 

  • Salesky ST, Anderson W (2018) Buoyancy effects on large-scale motions in convective atmospheric boundary layers: implications for modulation of near-wall processes. J Fluid Mech 856:135–168

    Google Scholar 

  • Salesky ST, Anderson W (2020) Revisiting inclination of large-scale motions in unstably stratified channel flow. J Fluid Mech 884:R5. https://doi.org/10.1017/jfm.2019.987

    Article  Google Scholar 

  • Salesky ST, Chamecki M (2012) Random errors in turbulence measurements in the atmospheric surface layer: implications for Monin–Obukhov similarity theory. J Atmos Sci 69(12):3700–3714

    Google Scholar 

  • Salesky ST, Chamecki M, Dias NL (2012) Estimating the random error in eddy-covariance based fluxes and other turbulence statistics: the filtering method. Boundary-Layer Meteorol 144(1):113–135

    Google Scholar 

  • Salesky ST, Katul GG, Chamecki M (2013) Buoyancy effects on the integral lengthscales and mean velocity profile in atmospheric surface layer flows. Phys Fluids 25(10):105101

    Google Scholar 

  • Salesky ST, Chamecki M, Bou-Zeid E (2017) On the nature of the transition between roll and cellular organization in the convective boundary layer. Boundary-Layer Meteorol 163(1):41–68

    Google Scholar 

  • Sander J (2000) On a general solution for eddy viscosity in the surface layer and implications to the diabatic wind profile. Contrib Atmos Phys 71(4)

  • Schmidt H, Schumann U (1989) Coherent structure of the convective boundary layer derived from large-eddy simulations. J Fluid Mech 200:511–562

    Google Scholar 

  • Seidel DJ, Ao CO, Li K (2010) Estimating climatological planetary boundary layer heights from radiosonde observations: comparison of methods and uncertainty analysis. J Geophys Res Atmos. https://doi.org/10.1029/2009JD013680

    Article  Google Scholar 

  • Sellers WD (1962) A simplified derivation of the diabatic wind profile. J Atmos Sci 19(2):180–181

    Google Scholar 

  • Shah S, Bou-Zeid E (2014) Very-large-scale motions in the atmospheric boundary layer educed by snapshot proper orthogonal decomposition. Boundary-Layer Meteorol 153(3):355–387

    Google Scholar 

  • Song X, Zhang H, Chen J, Park SU (2010) Flux-gradient relationships in the atmospheric surface layer over the Gobi Desert in China. Boundary-Layer Meteorol 134(3):487–498

    Google Scholar 

  • Stull R (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Takeuchi K, Yokoyama O (1963) The scale of turbulence and the wind profile in the surface boundary layer. J Meteorol Soc Jpn Ser II 41(2):108–117

    Google Scholar 

  • Vercauteren N, Bou-Zeid E, Parlange MB, Lemmin U, Huwald H, Selker J, Meneveau C (2008) Subgrid-scale dynamics for water vapor, heat, and momentum over a lake. Boundary-Layer Meteorol 128(2):205–228

    Google Scholar 

  • Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. QJR Meteorol Soc 106:85–100. https://doi.org/10.1002/qj.49710644707

    Article  Google Scholar 

  • Wilson DK (2001) An alternative function for the wind and temperature gradients in unstable surface layers. Boundary-Layer Meteorol 99(1):151–158

    Google Scholar 

  • Wyngaard J (1984) Boundary-layer modeling. In: Atmospheric turbulence and air pollution modelling, Springer, pp 69–106

  • Wyngaard J, Coté O (1971) The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J Atmos Sci 28(2):190–201

    Google Scholar 

  • Wyngaard JC (1985) Structure of the planetary boundary layer and implications for its modeling. J Clim Appl Meteorol 24(11):1131–1142

    Google Scholar 

  • Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, Cambridge

    Google Scholar 

  • Yamamoto G (1959) Theory of turbulent transfer in non-neutral conditions. J Meteorol Soc Jpn Ser II 37(2):60–70

    Google Scholar 

  • Yokoyama O (1962) On the contradiction and modification of the equation of diabatic wind profile. J Meteorol Soc Jpn Ser II 40(6):359–360

    Google Scholar 

  • Zhang Y, Gao Z, Li D, Li Y, Zhang N, Zhao X, Chen J (2014) On the computation of planetary boundary-layer height using the bulk Richardson number method. Geosci Model Dev 7(6):2599–2611

    Google Scholar 

  • Zilitinkevich S, Gryanik VM, Lykossov V, Mironov D (1999) Third-order transport and nonlocal turbulence closures for convective boundary layers. J Atmos Sci 56(19):3463–3477

    Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the U.S. National Science Foundation under Grant AGS-1853354. This paper was completed when I was visiting Leibniz University Hannover, while supported by the Alexander von Humboldt Foundation. I thank Professor Marc Parlange and Professor Heping Liu for allowing me to use the lake and dryland datasets.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D. The O’KEYPS Equation and 60 Years Beyond. Boundary-Layer Meteorol 179, 19–42 (2021). https://doi.org/10.1007/s10546-020-00585-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00585-y

Keywords

Navigation