Skip to main content
Log in

Boundary-Layer Flow Over Complex Topography

  • Research Article
  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

We review developments in the field of boundary-layer flow over complex topography, focussing on the period from 1970 to the present day. The review follows two parallel strands: the impact of hills on flow in the atmospheric boundary layer and gravity-driven flows on hill slopes initiated by heating or cooling of the surface. For each strand we consider the understanding that has resulted from analytic theory before moving to more realistic numerical computation, initially using turbulence closure models and, more recently, eddy-resolving schemes. Next we review the field experiments and the physical models that have contributed to present understanding in both strands. For the period 1970–2000 with hindsight we can link major advances in theory and modelling to the key papers that announced them, but for the last two decades we have cast the net wider to ensure that we have not missed steps that eventually will be seen as critical. Two important new themes are given prominence in the 2000–2020 period. The first is flow over hills covered with tall plant canopies. The presence of a canopy changes the flow in important ways both when the flow is nearly neutral and also when it is stably stratified, forming a link between our two main strands. The second is the use of eddy-resolving models as vehicles to bring together hill flows and gravity-driven flows in a unified description of complex terrain meteorology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Allen T, Brown AR (2002) Large-eddy simulation of turbulent separated flow over rough hills. Boundary-Layer Meteorol 102:177–198

    Google Scholar 

  • Amanatidis GT, Papadopoulos KH, Bartzis JG, Helmis CG (1992) Evidence of katabatic flows deduced from a 84 m meteorological tower in Athens, Greece. Boundary-Layer Meteorol 58:117–132

    Google Scholar 

  • Arduini G, Staquet C, Chemel C (2016) Interactions between the nighttime valley-wind system and a developing cold-air pool. Boundary-Layer Meteorol 161:49–72

    Google Scholar 

  • Arritt RW, Pielke RA (1986) Interactions of nocturnal slope flows with ambient winds. Boundary-Layer Meteorol 37:183–195

    Google Scholar 

  • Arthur RS, Lundquist KA, Wiersema DJ, Bao J, Chow FK (2020) Evaluating implementations of the immersed boundary method in the weather research and forecasting model. Mon Weather Rev 148(5):2087–2109

    Google Scholar 

  • Athanassiadou M, Castro IP (2001) Neutral flow over a series of rough hills: a laboratory experiment. Boundary-Layer Meteorol 101:1–30

    Google Scholar 

  • Aubinet M, Feigenwinter C, Heinesch B, Bernhofer C, Canepa F, Lindroth A, Montagnani L, Rebmann C, Sedlak P, Van Gorsel E (2010) Direct advection measurements do not help to solve the night-time CO2 closure problem: evidence from three different forests. Agric For Meteorol 150:655–664

    Google Scholar 

  • Axelsen SL, van Dop H (2009a) Large-eddy simulation of katabatic winds. Part 1: comparison with observations. Acta Geophys 57:803–836

    Google Scholar 

  • Axelsen SL, van Dop H (2009b) Large-eddy simulation of katabatic winds. Part 2: sensitivity study and comparison with analytical models. Acta Geophys 57:837–856

    Google Scholar 

  • Ayotte KW (1997) Optimization of upstream profiles in modelling flow over complex terrain. Boundary-Layer Meteorol 83:285–309

    Google Scholar 

  • Ayotte KW (2008) Computational modelling for wind energy assessment. J Wind Eng Ind Aerodyn 96:1571–1590

    Google Scholar 

  • Ayotte KW, Hughes DE (2004) Observations of boundary-layer wind-tunnel flow over isolated ridges of varying steepness and roughness. Boundary-Layer Meteorol 112:525–556

    Google Scholar 

  • Ayotte KW, Taylor PA (1995) A mixed spectral-finite difference 3D model of neutral planetary boundary- layer flow over topography. J Atmos Sci 52:3523–3537

    Google Scholar 

  • Ayotte KW, Xu D, Taylor PA (1994) The impact of turbulence schemes on predictions of the mixed spectral finite-difference model of flow over topography. Boundary-Layer Meteorol 68:1–33

    Google Scholar 

  • Babić N, De Wekker SFJ (2019) Characteristics of roll and cellular convection in a deep and wide semiarid valley: a large-eddy simulation study. Atmos Res 223:74–87

    Google Scholar 

  • Bader DC, Mckee TB (1983) Dynamical model simulation of the morning boundary layer development in deep mountain valleys. J Appl Meteorol Climatol 22:341–351

    Google Scholar 

  • Baines PG (2001) Mixing in flows down gentle slopes into stratified environments. J Fluid Mech 443:237–270

    Google Scholar 

  • Baldocchi DD, Meyers TP (1988) A spectral and lag-correlation analysis of turbulence in a deciduous forest canopy. Boundary-Layer Meteorol 45:31–58

    Google Scholar 

  • Bao J, Chow FK, Lundquist KA (2018) Large-eddy simulation over complex terrain using an improved immersed boundary method in the weather research and forecasting model. Mon Weather Rev 146(9):2781–2797

    Google Scholar 

  • Basu S, Lacser A (2017) A cautionary note on the use of Monin–Obukhov similarity theory in very high-resolution large-eddy simulations. Boundary-Layer Meteorol 163:351–355

    Google Scholar 

  • Bechmann A, Sørensen NN, Berg J, Mann J, Réthoré PE (2011) The bolund experiment, part II: blind comparison of microscale flow models. Boundary-Layer Meteorol 141:245–271

    Google Scholar 

  • Belcher SE (1990) Turbulent boundary layer flow over undulating surfaces. Ph.D. Dissertation, Cambridge University, UK

  • Belcher SE, Hunt JCR (1998) Turbulent flow over hills and waves. Annu Rev Fluid Mech 30:507–538

    Google Scholar 

  • Belcher SE, Wood N (1996) Form and wave drag due to stably stratified turbulent flow over low ridges. Q J R Meteorol Soc 122:863–902

    Google Scholar 

  • Belcher SE, Newley T, Hunt JCR (1993) The drag on an undulating surface induced by the flow of a turbulent boundary layer. J Fluid Mech 249:557–596

    Google Scholar 

  • Belcher SE, Finnigan JJ, Harman IN (2008) Flows through forest canopies in complex terrain. Ecol Appl 18:1436–1453

    Google Scholar 

  • Belcher SE, Harman IN, Finnigan JJ (2012) The wind in the willows: flows in forest canopies in complex terrain. Annu Rev Fluid Mech 44:479–504

    Google Scholar 

  • Beljaars ACM, Walmsley JL, Taylor PA (1987) Mixed spectral finite-difference model for neutrally stratified boundary-layer flow over roughness changes and topography. Boundary-Layer Meteorol 38:273–303

    Google Scholar 

  • Berg J, Mann J, Bechmann A, Courtney MS, Jørgensen HE (2011) The bolund experiment, part I: flow over a steep, three-dimensional hill. Boundary-Layer Meteorol 141:219–243

    Google Scholar 

  • Bleeg J, Digraskar D, Woodcock J, Corbett J-F (2014) Modelling stable thermal stratification and its impact on wind flow over topography. Wind Energy 18:369–383

    Google Scholar 

  • Blumen W (1990) Atmospheric processes over complex terrain, vol 45. American Meteorological Society, Boston

    Google Scholar 

  • Bou-Zeid E (2014) Challenging the large eddy simulation technique with advanced a posteriori tests. J Fluid Mech 764:1–4

    Google Scholar 

  • Bowen AJ, Mortensen NG (2004) WAsP prediction errors due to site orography. Riso-R-995(EN), ISBN 87-550- 2320-7, Roskilde, Denmark

  • Bradley EF (1980) An experimental study of the profiles of wind speed, shearing stress and turbulence at the crest of a large hill. Q J R Meteorol Soc 106:101–124

    Google Scholar 

  • Bradley EF (1983) The influence of thermal stability and angle of incidence on the acceleration of wind up a slope. J Wind Eng Ind Aerodyn 15:231–242

    Google Scholar 

  • Bradshaw P (1969) The analogy between streamline curvature and buoyancy in turbulent shear flow. J Fluid Mech 36:177–191

  • Britter RE, Hunt JCR, Richards KJ (1981) Air flow over a two-dimensional hill: studies of velocity speed-up, roughness effects and turbulence. Q J R Meteorol Soc 107:91–110

    Google Scholar 

  • Brown AR, Wood N (2001) Turbulent form drag on anisotropic three-dimensional orography. Boundary-Layer Meteorol 101:229–241

    Google Scholar 

  • Brown AR, Hobson JM, Wood N (2001) Large-eddy simulation of neutral turbulent flow over rough sinusoidal ridges. Boundary-Layer Meteorol 98:411–441

    Google Scholar 

  • Brown AR, Athanassiadou M, Wood N (2003) Topographically induced waves within the stable boundary layer. Q J R Meteorol Soc 129:3357–3370

    Google Scholar 

  • Burkholder BA, Fedorovich E, Shapiro A (2011) Evaluating subgrid-scale models for large-eddy simulation of turbulent katabatic flow. In: Meyers J, Sagaut P, Salvetti MV, Geurts B (eds) Quality and reliability of large-eddy simulations II. Springer, Dordrecht, pp 149–160

    Google Scholar 

  • Burns P, Chemel C (2014) Evolution of cold-air-pooling processes in complex terrain. Boundary-Layer Meteorol 150:423–447

    Google Scholar 

  • Burns P, Chemel C (2015) Interactions between downslope flows and a developing cold-air pool. Boundary-Layer Meteorol 154:57–80

    Google Scholar 

  • Businger JA, Wyngaard JC, Izumi Y, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189

    Google Scholar 

  • Carruthers DJ, Choularton TW (1982) Airflow over hills of moderate slope. Q J R Meteorol Soc 108:603–624

    Google Scholar 

  • Carruthers DJ, Hunt JCR (1990) Fluid mechanics of airflow over hills: turbulence, fluxes and waves in the boundary layer. In: Blumen W (ed) Atmospheric processes over complex terrain, vol 45. American Meteorological Society, Boston, pp 83–107

    Google Scholar 

  • Catalano F, Moeng CH (2010) Large-eddy simulation of the daytime boundary layer in an idealized valley using the weather research and forecasting numerical model. Boundary-Layer Meteorol 137:49–75

    Google Scholar 

  • Chávez-Arroyo R, Sanz-Rodrigo J, Gankarski P (2014) Modelling of atmospheric boundary-layer flow in complex terrain with different forest parameterizations. J Phys: Conf Ser 524:012119

    Google Scholar 

  • Chen B, Chamecki M, Katul GG (2019) Effects of topography on in-canopy transport of gases emitted within dense forests. Q J R Meteorol Soc 145:2101–2114

    Google Scholar 

  • Choukulkar A, Calhoun R, Billings B, Doyle J (2012) Investigation of a complex nocturnal flow in Owens Valley, California using coherent Doppler Lidar. Boundary-Layer Meteorol 144:359–378

    Google Scholar 

  • Chow FK, Street RL (2009) Evaluation of turbulence closure models for large-eddy simulation over complex terrain: flow over Askervein Hill. J Appl Meteorol Climatol 48(5):1050–1065

    Google Scholar 

  • Chow FK, Weigel AP, Street RL, Rotach MW, Xue M (2006) High-resolution large-eddy simulations of flow in a steep alpine valley. Part I: methodology, verification, and sensitivity experiments. J Appl Meteorol Climatol 45(1):63–86

    Google Scholar 

  • Clark TL (1977) A small-scale dynamic model using a terrain-following coordinate transformation. J Comput Phys 24(2):186–215

    Google Scholar 

  • Clements WE, Nappo CJ (1983) Observations of katabatic flow on a simple slope. J Appl Meteorol Climatol 22:331–335

    Google Scholar 

  • Coppin PA, Bradley EF, Finnigan JJ (1994) Measurements of flow over an elongated ridge and its thermal stability dependence: the mean field. Boundary-Layer Meteorol 69:173–199

    Google Scholar 

  • Cuxart J (2015) When can a high-resolution simulation over complex terrain be called LES? Front Earth Sci 3:1–6

    Google Scholar 

  • Dar AS, Berg J, Troldborg N, Patton EG (2019) On the self-similarity of wind turbine wakes in a complex terrain using large eddy simulation. Wind Energy 4(4):633–644

    Google Scholar 

  • De Bruyn Kops S, Riley J (2019) The effects of stable stratification on the decay of initially isotropic homogeneous turbulence. J Fluid Mech 860:787–821

    Google Scholar 

  • Deardorff JW (1970a) A numerical study of three-dimensional turbulent channel flow at large Reynold’s numbers. J Fluid Mech 41:453–480

    Google Scholar 

  • Deardorff JW (1970b) A three-dimensional numerical investigation of the idealized planetary boundary layer. Geophys Astrophys Fluid Dyn 1(3):377–410

    Google Scholar 

  • Deardorff JW (1972a) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115

    Google Scholar 

  • Deardorff JW (1972b) Three-dimensional numerical modeling of the planetary boundary layer. In: Haugen DA (ed) Workshop on micrometeorology. American Meteorological Society, Boston, pp 271–311

    Google Scholar 

  • Deaves DM (1975) Wind over hills: a numerical approach. J Wind Eng Ind Aerodyn 1:371–391

    Google Scholar 

  • Defant F (1949) Zur Theorie der Hangwinde, nebst Remerkungen zur Theorie der Berg- und Talwinde [A Theory of Slope Winds, Along With Remarks on the Theory of Mountain Winds and Valley Winds]. Archiv fuer Meteorologie Geophysik und Biolimatologie Ser. A 1:421–450

    Google Scholar 

  • Denby B (1999) Second-order modelling of turbulence in katabatic flows. Boundary-Layer Meteorol 92:65–98

    Google Scholar 

  • Desmond CJ, Watson SJ, Hancock PE (2017) Modelling the wind energy resources in complex terrain and atmospheres. Numerical simulation and wind tunnel investigation of non-neutral forest canopy flows. J Wind Eng Ind Aerodyn 166:48–60

    Google Scholar 

  • Di Sabatino S (2016) Boundary-layer atmospheric processes in mountainous terrain: results from MATERHORN-X. Boundary-Layer Meteorol 159:465–467

    Google Scholar 

  • Diebold M, Higgins C, Fang J, Bechmann A, Parlange MB (2013) Flow over hills: a large-eddy simulation of the Bolund case. Boundary-Layer Meteorol 148:177–194

    Google Scholar 

  • Doran JC (1991) The effects of ambient winds on valley drainage flows. Boundary-Layer Meteorol 55:177–189

    Google Scholar 

  • Doran JC, Horst TW, Whiteman CD (1990) The development and structure of nocturnal slope winds in a simple valley. Boundary-Layer Meteorol 52:41–68

    Google Scholar 

  • Dörnbrack A, Schumann U (1993) Numerical simulation of turbulent convective flow over wavy terrain. Boundary-Layer Meteorol 65:323–355

    Google Scholar 

  • Dupont S, Brunet Y, Finnigan JJ (2008) Large-eddy simulation of turbulent flow over a forested hill: validation and coherent structure identification. Q J R Meteorol Soc 134:1911–1929

    Google Scholar 

  • Dyer AJ (1967) The turbulent transport of heat and water vapour in an unstable atmosphere. Q J R Meteorol Soc 93:501–508

    Google Scholar 

  • Dyer AJ (1974) A review of flux-profile relationships. Boundary-Layer Meteorol 7:363–372 

  • Feigenwinter C, Bernhofer C, Vogt R (2004) The influence of advection on the short term CO2 budget in and above a forest canopy. Boundary-Layer Meteorol 113:201–224

    Google Scholar 

  • Fernando HJ (2019) The Perdigão: peering into microscale details of mountain winds. Bull Am Meteorol Soc 100:799–819

    Google Scholar 

  • Fernando HJS, Pardyjak ER (2013) Field studies delve into the intricacies of mountain weather. EOS Trans AGU 94:313–315

    Google Scholar 

  • Fernando HJS, Pardyjak ER, Di Sabatino S (2015) The MATERHORN: unraveling the Intricacies of mountain weather. Bull Am Meteorol Soc 96:1945–1967

    Google Scholar 

  • Finnigan JJ (1988) Air flow over complex terrain. In: Steffen WL, Denmead OT (eds) Flow and transport in the natural environment: advances and applications. Springer, Heidelberg, pp 183–229

    Google Scholar 

  • Finnigan JJ (2000) Turbulence in Plant Canopies. Annu Rev Fluid Mech 32:519–571

    Google Scholar 

  • Finnigan JJ (2006) Turbulent flow in canopies on complex topography and the effects of stable stratification. In: Gayev Y, Hunt JCR (eds) Flow and transport processes with complex obstructions. Proceedings of the 2003 NATO advanced studies workshop, Kiev, Ukraine. Springer, Berlin, pp 199–219

    Google Scholar 

  • Finnigan JJ (2008) Introduction to flux measurements in difficult conditions. Ecol Appl 18:1340–1350

    Google Scholar 

  • Finnigan JJ, Belcher SE (2004) Flow over a hill covered with a plant canopy. Q J R Meteorol Soc 130:1–29

    Google Scholar 

  • Finnigan JJ, Brunet Y (1995) Turbulent airflow in forests on flat and hilly terrain. In: Coutts MP, Grace J (eds) Wind and trees. Cambridge University Press, Cambridge, pp 3–40

    Google Scholar 

  • Finnigan JJ, Hughes D (2008) A wind tunnel study of stably stratified flow on a ridge covered with a tall plant canopy. 18th AMS Symposium on Boundary layers and Turbulence. http://ams.confex.com/ams/pdfpapers/140135.pdf

  • Finnigan JJ, Raupach MR (1987) Transfer processes in plant canopies in relation to stomatal characteristics. In: Zeiger E, Farquhar G, Cowan IR (eds) Stomatal function. Stanford University Press, Stanford, pp 385–429

    Google Scholar 

  • Finnigan JJ, Shaw RH (2008) Double-averaging methodology and its application to turbulent flow in and above vegetation canopies. Acta Geophys 5:534–561

    Google Scholar 

  • Finnigan JJ, Raupach MR, Bradley EF, Aldis GK (1990) A wind tunnel study of turbulent flow over a two-dimensional ridge. Boundary-Layer Meteorol 50:277–317

    Google Scholar 

  • Finnigan JJ, Shaw RH, Patton EG (2009) Turbulence structure above vegetation canopies. J Fluid Mech 637:387–424

    Google Scholar 

  • Finnigan JJ, Harman IN, Ross AN, Belcher SE (2015) First-order turbulence closure for modelling complex canopy flows. Q J R Meteorol Soc 141:2907–2916

    Google Scholar 

  • Fitzjarrald DR (1984) Katabatic wind in opposing flow. J Atmos Sci 41:1143–1158

    Google Scholar 

  • Foken T (2008) Micrometeorology. Springer, Berlin

    Google Scholar 

  • Forrer J, Rotach MW (1997) On the turbulence structure in the stable boundary layer over the Greenland ice sheet. Boundary-Layer Meteorol 85:111–136

    Google Scholar 

  • Foster CS, Crosman ET, Horel JD (2017) Simulations of a cold-air pool in Utah’s Salt Lake Valley: sensitivity to land use and snow cover. Boundary-Layer Meteorol 164:63–87

    Google Scholar 

  • Fox DG, Lilly DK (1972) Numerical simulation of turbulent flows. Rev Geophys 10(1):51–72

    Google Scholar 

  • Gal-Chen T, Somerville RCJ (1975) On the use of a coordinate transformation for the solution of the Navier–Stokes equations. J Comput Phys 17:209–228

    Google Scholar 

  • Gallée H, Schayes G (1992) Dynamical aspects of katabatic wind evolution in the Antarctic coastal zone. Boundary-Layer Meteorol 59:141–161

    Google Scholar 

  • Geiss A, Mahrt L (2015) Decomposition of spatial structure of nocturnal flow over gentle terrain. Boundary-Layer Meteorol 156:337–347

    Google Scholar 

  • Giometto MG, Grandi R, Fang J (2017a) Katabatic flow: a closed-form solution with spatially-varying eddy diffusivities. Boundary-Layer Meteorol 162:307–317

    Google Scholar 

  • Giometto MG, Katul GG, Fang J, Parlange MB (2017b) Direct numerical simulation of turbulent slope flows up to Grashof number Gr = 2.1 × 1011. J Fluid Mech 829:589–620

    Google Scholar 

  • Goger B, Rotach MW, Gohm A (2018) The impact of three-dimensional effects on the simulation of turbulence kinetic energy in a major alpine valley. Boundary-Layer Meteorol 168:1–27

    Google Scholar 

  • Golaz J-C, Doyle JD Wang (2009) One-way nested large-eddy simulation over the Askervein Hill. J Adv Model Earth Syst. https://doi.org/10.3894/JAMES.2009.1.6

    Article  Google Scholar 

  • Gong W, Ibbetson A (1989) A wind tunnel study of turbulent flow over model hills. Boundary-Layer Meteorol 49:113–148

    Google Scholar 

  • Gong W, Taylor PA, Dornbrack A (1996) Turbulent boundary-layer flow over fixed aerodynamically rough two-dimensional sinusoidal waves. J Fluid Mech 312:1–37

    Google Scholar 

  • Goulden ML, Miller SD, da Rocha HR (2006) Nocturnal cold air drainage and pooling in a tropical forest. J Geophys Res 111:(D8)D08S04

    Google Scholar 

  • Grachev AA, Leo LS, Sabatino SD (2016) Structure of turbulence in katabatic flows below and above the wind-speed maximum. Boundary-Layer Meteorol 159:469–494

    Google Scholar 

  • Grant ER, Ross AN, Gardiner BA, Mobbs SD (2015) Field observations of canopy flows over complex terrain. Boundary-Layer Meteorol 156:231–251

    Google Scholar 

  • Grant ER, Ross AN, Gardiner BA (2016) Modelling canopy flows over complex terrain. Boundary-Layer Meteorol 161:417–437

    Google Scholar 

  • Grisogono B, Axelsen SL (2012) A note on the pure katabatic wind maximum over gentle slopes. Boundary-Layer Meteorol 145:527–538

    Google Scholar 

  • Grisogono B, Oerlemans J (2001) Katabatic flow: analytic solution for gradually varying eddy diffusivities. J Atmos Sci 58:3349–3354

    Google Scholar 

  • Grubisic V, Doyle JD, Kuettner J, Mobbs SD, Smith RB, Whiteman CD, Dirks R, Czyzyk S, Cohn SA, Vosper S, Weissmann M, Haimov S, Stephan F, de Wekker jJ, Pan LI, Chow FK (2008) The terrain-induced rotor experiment: a field campaign overview including observational highlights. Bull Am Meteorol Soc 89(10):1513–1534

    Google Scholar 

  • Gryning S-E, Mahrt L, Larsen S (1985) Oscillating nocturnal slope flow in a coastal valley. Tellus A 37A:196–203

    Google Scholar 

  • Hahn CJ (1981) A study of the diurnal behavior of boundary-layer winds at the Boulder Atmospheric Observatory. Boundary-Layer Meteorol 21:231–245

    Google Scholar 

  • Haiden T, Whiteman CD, Hoch SW, Lehner M (2010) A mass flux model of nocturnal cold-air intrusions into a closed basin. J Appl Meteorol Climatol 50:933–943

    Google Scholar 

  • Hald C, Zeeman M, Laux P, Mauder M, Kunstmann H (2019) Large-eddy simulations of real-world episodes in complex terrain based on era-reanalysis and validated by ground-based remote sensing data. Mon Weather Rev 147(12):4325–4343

    Google Scholar 

  • Harman IN, Finnigan JJ (2007) A simple unified theory for flow in the canopy and roughness sublayer. Boundary-Layer Meteorol 123:339–363

    Google Scholar 

  • Harman IN, Finnigan JJ (2008) Scalar concentration profiles in the canopy and roughness sublayer. Boundary-Layer Meteorol 129:323–351

    Google Scholar 

  • Harman IN, Finnigan JJ (2010) Flow over hills covered by a plant canopy: extension to generalised two-dimensional topography. Boundary-Layer Meteorol 135:51–65

    Google Scholar 

  • Harman IN, Finnigan JJ (2013) Flow over a narrow ridge covered with a plant canopy: a comparison between wind-tunnel observations and linear theory. Boundary-Layer Meteorol 147:1–20

    Google Scholar 

  • Hatcher L, Hogg AJ, Woods AW (2000) The effects of drag on turbulent gravity currents. J Fluid Mech 416:297–314

    Google Scholar 

  • Heinemann G (1999) The Kabeg’97 field experiment: an aircraft-based study of katabatic wind dynamics over the Greenland ice sheet. Boundary-Layer Meteorol 93:75–116

    Google Scholar 

  • Heinemann G (2004) Local similarity properties of the continuously turbulent stable boundary layer over Greenland. Boundary-Layer Meteorol 112:283–305

    Google Scholar 

  • Henn DS, Sykes RI (1999) Large-eddy simulation of flow over wavy surfaces. J Fluid Mech 383:75–112

    Google Scholar 

  • Henne S, Furger M, Nyeki S, Steinbacher M, Neininger B, DeWekker SFJ, Dommen J, Spichtinger N, Stohl A, Prevot ASH (2004) Quantification of topographic venting of boundary-layer air to the free troposphere. Atmos Chem Phys 4:497–509

    Google Scholar 

  • Hennemuth B (1986) Thermal asymmetry and cross-valley circulation in a small alpine valley. Boundary-Layer Meteorol 36:371–394

    Google Scholar 

  • Honnert R (2016) Representation of the grey zone of turbulence in the atmospheric boundary layer. Adv Sci Res 13:63–67

    Google Scholar 

  • Horst TW, Doran JC (1986) Nocturnal drainage flow on simple slopes. Boundary-Layer Meteorol 34:263–286

    Google Scholar 

  • Horst TW, Doran JC (1988) The turbulence structure of nocturnal slope flow. J Atmos Sci 45:605–616

    Google Scholar 

  • Hunt JCR (1980) Wind over hills. survey paper for AMS workshop on the planetary boundary layer. American Meteorological Society, Boulder, pp 101–157

    Google Scholar 

  • Hunt JCR, Carruthers DJ (1990) Rapid distortion theory and the ‘problems’ of turbulence. J Fluid Mech 212:497–532

    Google Scholar 

  • Hunt JCR, Fernholz H (1975) Wind-tunnel simulation of the atmospheric boundary layer: a report on euromech 50. J Fluid Mech 70:543–559

    Google Scholar 

  • Hunt JCR, Snyder WH (1980) Experiments on stably and neutrally stratified flow over a model three -dimensional hill. J Fluid Mech 96:671–704

    Google Scholar 

  • Hunt JCR, Leibovich S, Richards KJ (1988a) Turbulent shear flows over low hills. Q J R Meteorol Soc 114:1435–1470

    Google Scholar 

  • Hunt JCR, Richards KJ, Brighton PWM (1988b) Stably stratified shear flow over low hills. Q J R Meteorol Soc 114:859–886

    Google Scholar 

  • Hunt JCR, Weng WS, Carruthers DJ (1988c) Modelling deposition fluxes on hills. In: van Dop H (ed) Air pollution modelling and its applications. Plenum Publishing Corp, New York

    Google Scholar 

  • Huntingford C, Blyth EM, Wood N, Hewer FE, Grant ALM (1998) The effect of orography on evaporation. Boundary-Layer Meteorol 86:487–504

    Google Scholar 

  • Iizuka S, Kondo H (2004) Performance of various sub-grid scale models in large-eddy simulations of turbulent flow over complex terrain. Atmos Environ 38:7083–7091

    Google Scholar 

  • Iizuka S, Kondo H (2006) Large-eddy simulations of turbulent flow over complex terrain using modified static eddy viscosity models. Atmos Environ 40:925–935

    Google Scholar 

  • Jackson PS, Hunt JCR (1975) Turbulent wind flow over a low hill. Q J R Meteorol Soc 101:929–955

    Google Scholar 

  • Jenkins GJ, Mason PJ, Moores WH, Dykes RI (1981) Measurements of the flow structure around Ailsa Craig, a steep, three-dimensional, isolated hill. Q J Roy Meteorol Soc 107:749–984

    Google Scholar 

  • Jensen DD, Nadeau DF, Hoch SW, Pardyjak ER (2017) The evolution and sensitivity of katabatic flow dynamics to external influences through the evening transition. Q J R Meteorol Soc 143:423–438

    Google Scholar 

  • Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, Oxford

    Google Scholar 

  • Kaimal JC, Wyngaard JC (1990) The kansas and minnesota experiments. Boundary-Layer Meteorol 50:31–47

    Google Scholar 

  • Katul GG, Mahrt L, Poggi D, Sanz C (2004) One- and two-equation models for canopy turbulence. Boundary-Layer Meteorol 113:81–109

    Google Scholar 

  • Katul GG, Finnigan JJ, Poggi D, Leuning R, Belcher SE (2006) The influence of hilly terrain on canopy-atmosphere carbon dioxide exchange. Boundary Layer Meteorol 118:189–216

    Google Scholar 

  • King J (1989) Low-level wind profiles at an Antarctic coastal station. Antarct Sci 1(2):169–178

    Google Scholar 

  • Kirshbaum DJ (2017) On upstream blocking over heated mountain ridges. Q J R Meteorol Soc 143(702):53–68

    Google Scholar 

  • Kleidon A (2016) Thermodynamic foundations of the earth system. Cambridge University Press, Cambridge

    Google Scholar 

  • Kondo J, Sato T (1988) A simple model of drainage flow on a slope. Boundary-Layer Meteorol 43:103–123

    Google Scholar 

  • Kottmeier C (1986) Shallow gravity flows over the Ekström ice shelf. Boundary-Layer Meteorol 35:1–20

    Google Scholar 

  • Kuwagata T, Kimura F (1997) Daytime boundary layer evolution in a deep valley. Part II: numerical simulation of the cross-valley circulation. J Appl Meteorol 36:883–895

    Google Scholar 

  • Lareau NP, Horel JD (2015) Dynamically induced displacements of a persistent cold-air pool. Boundary-Layer Meteorol 154:291–316

    Google Scholar 

  • Lee X, Barr AG (1998) Climatology of gravity waves in a forest. Q J R Meteorol Soc 124:1403–1419

    Google Scholar 

  • Lee X, Hu X (2002) Forest-air fluxes of carbon, water and energy over non-flat terrain. Boundary Layer Meteorol 103:277–301

    Google Scholar 

  • Lee HN, Kau WS (1984) Simulation of three-dimensional wind flow over complex terrain in the atmospheric boundary layer. Boundary-Layer Meteorol 29:381–396

    Google Scholar 

  • Lehner M, Whiteman CD, Hoch SW (2015) A case study of the nocturnal boundary layer evolution on a slope at the foot of a desert mountain. J Appl Meteorol Climatol 54:732–751

    Google Scholar 

  • Lewis HW, Mobbs SD, Vosper SB, Brown AR (2008a) The effects of surface heating on hill-induced flow separation. Boundary-Layer Meteorol 129:269–287

    Google Scholar 

  • Lewis HW, Mobbs SD, Lehning M (2008b) Observations of cross-ridge flows across steep terrain. Q J R Meteorol Soc 134:801–816

    Google Scholar 

  • Litt M, Sicart J-E, Helgason WD, Wagnon P (2015) Turbulence characteristics in the atmospheric surface layer for different wind regimes over the tropical zongo glacier (Bolivia, S). Boundary-Layer Meteorol 154:471–495

    Google Scholar 

  • Łobocki L (2017) Turbulent mechanical energy budget in stably stratified baroclinic flows over sloping terrain. Boundary-Layer Meteorol 164:353–365

    Google Scholar 

  • Loureiro JBR, Silva Freire AP (2005) Experimental investigation of turbulent boundary layers over steep two-dimensional elevations. J Braz Soc Mech Sci Eng. https://doi.org/10.1590/s1678-58782005000400001

    Article  Google Scholar 

  • Mahrt L (1982) Momentum balance of gravity flows. J Atmos Sci 39:2701–2711

    Google Scholar 

  • Mahrt L (1999) Stratified atmospheric boundary layers. Boundary-Layer Meteorol 90:375–396

    Google Scholar 

  • Mahrt L (2010) Variability and maintenance of turbulence in the very stable boundary layer. Boundary-Layer Meteorol 135:1–18

    Google Scholar 

  • Mahrt L, Larsen S (1982) Small scale drainage front. Tellus 34:579–587

    Google Scholar 

  • Mahrt L, Larsen S (1990) Relation of slope winds to the ambient flow over gentle terrain. Boundary-Layer Meteorol 53:93–102

    Google Scholar 

  • Mahrt L, Vickers D, Nakamura R (2001) Shallow drainage flows. Boundary-Layer Meteorol 101:243–260

    Google Scholar 

  • Mahrt L, Thomas CK, Grachev AA, Persson POG (2018) Near-surface vertical flux divergence in the stable boundary layer. Boundary-Layer Meteorol 169:373–393

    Google Scholar 

  • Manins PC (1992) Vertical fluxes in katabatic flows. Boundary-Layer Meteorol 60:169–178

    Google Scholar 

  • Manins PC, Sawford BL (1979a) Katabatic winds: a field case study. Q J R Meteorol Soc 105:1011–1025

    Google Scholar 

  • Manins PC, Sawford BL (1979b) A model of katabatic winds. J Atmos Sci 36:619–630

    Google Scholar 

  • Mann J, Angelou N, Arnqvist J, Callies D, Cantero E, Chávez Arroyo R, Courtney M (2017) Complex terrain experiments in the new european wind atlas. Philos Trans R Soc A 375:20160101. https://doi.org/10.1098/rsta.2016.0101

    Article  Google Scholar 

  • Martínez D, Jiménez MA, Cuxart J, Mahrt L (2010) Heterogeneous nocturnal cooling in a large basin under very stable conditions. Boundary-Layer Meteorol 137:97–113

    Google Scholar 

  • Mason PJ (1985) On the parametrization of orographic drag. In: ECMWF seminar on physical parametrization for numerical models of the atmosphere, ECMWF, Shinfield Park, Reading, pp 139–165

  • Mason PJ (1986) Flow over the summit of an isolated hill. Boundary-Layer Meteorol 37:385–405

    Google Scholar 

  • Mason PJ, King JC (1984) Atmospheric flow over a succession of nearly two dimensional ridges and valleys. Q J R Meteorol Soc 110:821–845

    Google Scholar 

  • Mason PJ, King JC (1985) Measurements and predictions of flow and turbulence over an isolated hill of moderate slope. Q J R Meteorol Soc 111:617–640

    Google Scholar 

  • Mason PJ, Sykes RI (1979) Flow over an isolated hill of moderate slope. Q J R Meteorol Soc 105:383–395

    Google Scholar 

  • Mayr GJ, Armi L, Gohm A, Zangl G, Durran DR, Flamant C, Gabersek S, Mobbs SD, Ross AN, Weissmann M (2007) Gap flows: results from the mesoscale alpine programme. Q J R Meteorol Soc 133:881–896

    Google Scholar 

  • Mickle RE, Cook NJ, Hoff AM, Jensen NO, Salmon JR, Taylor PA, Tetzlaff G, Teunissen HW (1988) The Askervein Hill Project: vertical profiles of wind and turbulence. Boundary-Layer Meteorol 43:143–169

    Google Scholar 

  • Mobbs SD, Vosper SB, Sheridan PF, Cardoso R, Burton RR, Arnold SJ (2005) Observations of downslope winds and rotors in the Falkland Islands. Q J R Meteorol Soc 131:329–351

    Google Scholar 

  • Monin AS, Obukhov AM (1954) Osnovnye zakonomernosti turbulentnogo peremeshivanija v prizemnom sloe atmosfery (Basic Laws of Turbulent Mixing in the Atmosphere Near the Ground) Trudy geofiz. inst. AN SSSR 24(151):163–187

  • Monti P, Fernando HJS, Princevac M (2002) Observations of flow and turbulence in the nocturnal boundary layer over a slope. J Atmos Sci 59:2513–2534

    Google Scholar 

  • Mortensen NG, Tindal A, Landberg L (2008) Field validation of the RIX performance indicator for flow in complex terrain. Paper presented at 2008 European Wind Energy Conference and Exhibition, Brussels, Belgium

  • Muñoz-Esparza D, Kosovic B (2018) Generation of inflow turbulence in large-eddy simulations of nonneutral atmospheric boundary layers with the cell perturbation method. Mon Weather Rev 146(6):1889–1909

    Google Scholar 

  • Muñoz-Esparza D, Kosović B, Mirocha J, van Beeck J (2014) Bridging the transition from mesoscale to microscale turbulence in numerical weather prediction models. Boundary-Layer Meteorol 153:409–440

    Google Scholar 

  • Muñoz-Esparza D, Lundquist JK, Sauer JA, Kosović B, Linn RR (2017) Coupled Mesoscale-LES modeling of a diurnal cycle during the CWEX-13 field campaign: from weather to boundary-layer eddies. J Adv Model Earth Syst 9:1572–1594

    Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW (2012) Flow during the evening transition over steep Alpine slopes. Q J R Meteorol Soc 139:607–624

    Google Scholar 

  • Nadeau DF, Pardyjak ER, Higgins CW, Parlange MB (2013) Similarity scaling over a steep alpine slope. Bound-Layer Meteorol 147:401–419

    Google Scholar 

  • Nadeau DF, Oldroyd HJ, Pardyjak ER, Sommer N, Hoch SW, Parlange MB (2018) Field observations of the morning transition over a steep slope in a narrow alpine valley. Environ Fluid Mech. https://doi.org/10.1007/s10652-018-9582-z

  • Nakagawa H, Nezu I (1977) Prediction of the contributions to the Reynolds stress from bursting events in open-channel flows. J Fluid Mech 80:99–128

    Google Scholar 

  • Nanni SC, Tampieri F (1985) A linear investigation on separation in laminar and turbulent boundary layers over low hills and valleys. Nuovo Cimento 8C:579–601

    Google Scholar 

  • Newley TMJ (1985) Turbulent airflow over hills. Ph.D. Dissertation, Cambridge University, UK

  • Nieuwstadt FTM (1984a) The turbulent structure of the stable, nocturnal boundary layer. J Atmos Sci 41:2202–2216

    Google Scholar 

  • Nieuwstadt FTM (1984b) Some aspects of the turbulent stable boundary layer. Boundary-Layer Meteorol 30:31–55

    Google Scholar 

  • Noppel H, Fiedler F (2002) Mesoscale heat transport over complex terrain by slope winds—a conceptual model and numerical simulations. Boundary-Layer Meteorol 104:73–97

    Google Scholar 

  • Obukhov AM (1971) Turbulence in an atmosphere with a non-uniform temperature. Boundary-Layer Meteorol 2:7–29

    Google Scholar 

  • Oldroyd HJ, Katul GG, Pardyjak ER, Parlange MB (2014) Momentum balance of katabatic flow on steep slopes covered with short vegetation. Geophys Res Lett 41:4761–4768

    Google Scholar 

  • Oldroyd HJ, Pardyjak ER, Higgins CW, Parlange MB (2016) Buoyant turbulent kinetic energy production in steep-slope katabatic flow. Boundary-Layer Meteorol 161:405–416

    Google Scholar 

  • Padro J (1987) Boundary-layer pollutant concentrations over complex terrain. Boundary-Layer Meteorol 38:17–28

    Google Scholar 

  • Padro J, Walmsley JL (1990) A mixed spectral-finite difference model for pollutant concentrations over a hill. Boundary-Layer Meteorol 51:343–363

    Google Scholar 

  • Palma JMLM, Silva Lopes A, Costa-Gomes VM, Veiga-Rodrigues C, Menke R, Vasiljevic N, Mann J (2019) Unravelling the wind flow over highly complex regions through computational modeling and two-dimensional lidar scanning. J Phys: Conf Ser. https://doi.org/10.1088/1742-6596/1222/1/012006

    Article  Google Scholar 

  • Papadopoulos KH, Helmis CG (1999) Evening and morning transition of katabatic flows. Boundary-Layer Meteorol 92:195–227

    Google Scholar 

  • Parish TR, Cassano JJ (2003) The role of katabatic winds on the antarctic surface wind regime. Mon Weather Rev 131:317–333

    Google Scholar 

  • Parmhed O, Oerlemans J, Grisogono B (2004) Describing surface fluxes in katabatic flow on Breidamerkurjökull, Iceland. Q J R Meteorol Soc 130:1137–1151

    Google Scholar 

  • Patton EG, Katul GG (2009) Turbulent pressure and velocity perturbations induced by gentle hills covered with sparse and dense canopies. Boundary-Layer Meteorol 133:189–217

    Google Scholar 

  • Patton EG, Sullivan PP, Ayotte KW (2006) Turbulent flow over isolated ridges: influence of vegetation. In: 17th American Meteorological Society symposium on boundary layers and turbulence. San Diego, CA. http://ams.confex.com/ams/pdfpapers/110925.pdf

  • Patton EG, Sullivan PP, Shaw RH, Finnigan JJ, Weil JC (2016) Impact of atmospheric stability on coupled boundary-layer-canopy turbulence. J Atmos Sci 73:1621–1647

    Google Scholar 

  • Pearse JR, Lidley D, Stevenson DC (1981) Wind flow over ridges in simulated atmospheric boundary layers. Boundary-Layer Meteorol 21:77–92

    Google Scholar 

  • Phillips NA (1957) A coordinate system having some special advantages for numerical forecasting. J Meteorol 14(2):184–185

    Google Scholar 

  • Poggi D, Katul GG (2007a) Turbulent flows inside forested hilly terrain: the recirculation region. Q J R Meteorol Soc 133:1027–1039

    Google Scholar 

  • Poggi D, Katul GG (2007b) An experimental investigation of the mean momentum budget inside dense canopies on narrow gentle hilly terrain. Agric For Meteorol 144:1–13

    Google Scholar 

  • Poggi D, Katul GG (2007c) The ejection-sweep cycle over gentle hills covered with bare and forested surfaces. Boundary Layer Meteorol 122:493–515

    Google Scholar 

  • Poggi D, Katul GG (2008) Turbulent intensities and velocity spectra for bare and forested gentle hills: flume experiments. Boundary Layer Meteorol 129:25–46

    Google Scholar 

  • Poggi D, Katul GG, Albertson JD, Ridolfi L (2007) An experimental investigation of turbulent flows over a hilly surface. Phys Fluids. https://doi.org/10.1063/1.2565528

    Article  Google Scholar 

  • Poggi D, Katul GG, Finnigan JJ, Belcher SE (2008) Analytical models for the mean flow inside dense canopies on gentle hilly terrain. Q J R Meteorol Soc 134:1095–1112

    Google Scholar 

  • Pospíšil S, Kuznetsov S, Kozmarb H, Michalcovác V (2017) Wind-tunnel simulation of thermally unstable atmospheric flow in complex terrain. Procedia Eng 190:575–580

    Google Scholar 

  • Prandtl L (1942) Führer durch die Strömungslehre. Vieweg und Sohn, Braunschweig

    Google Scholar 

  • Princevac M, Fernando HJS, Whiteman CD (2005) Turbulent entrainment into natural gravity-driven flows. J Fluid Mech 533:259–268

    Google Scholar 

  • Princevac M, Hunt JCR, Fernando HJS (2008) Quasi-steady katabatic winds on slopes in wide valleys: hydraulic theory and observations. J Atmos Sci 65:627–643

    Google Scholar 

  • Queney P (1948) The problem of air flow over mountains: a summary of theoretical studies. Bull Am Meteorol Soc 29:16–26

    Google Scholar 

  • Rai RK, Berg LK, Kosović B, Mirocha JD, Pekour MS, Shaw WJ (2019) Comparison of measured and numerically simulated turbulence statistics in a convective boundary layer over complex terrain. Boundary-Layer Meteorol 163:69–89

    Google Scholar 

  • Rao KS, Snodgrass HF (1981) A nonstationary nocturnal drainage flow model. Boundary-Layer Meteorol 20:309–320

    Google Scholar 

  • Raupach MR (1981) Conditional statistics of reynolds stress in rough-wall and smooth-wall turbulent boundary layers. J Fluid Mech 108:363–382

    Google Scholar 

  • Raupach MR, Finnigan JJ (1997) The influence of topography on meteorological variables and surface-atmosphere interactions. J Hydrol 190:182–213

    Google Scholar 

  • Raupach MR, Shaw RH (1982) Averaging procedures for flow within vegetation canopies. Boundary-Layer Meteorol 22:79–90

    Google Scholar 

  • Raupach MR, Coppin PA, Legg BJ (1986) Experiments on scalar dispersion within a model plant canopy part I: the turbulence structure. Boundary-Layer Meteorol 35:21–52

    Google Scholar 

  • Raupach MR, Antonia RA, Rajagopalan S (1991) Rough-wall turbulent boundary layers. Appl Mech Rev 44(1):1–25

    Google Scholar 

  • Raupach MR, Weng WS, Carruthers DJ, Hunt JCR (1992) Temperature and humidity fields and fluxes over low hills. Q J R Meteorol Soc 118:191–225

    Google Scholar 

  • Raupach MR, Finnigan JJ, Brunet Y (1996) Coherent eddies in vegetation canopies-the mixing layer analogy. Boundary-Layer Meteorol 78:351–382

    Google Scholar 

  • Ross AN (2008) Large eddy simulations of flow over forested ridges. Boundary-Layer Meteorol 128:59–76

    Google Scholar 

  • Ross AN (2011) Scalar transport over forested hills. Boundary-Layer Meteorol 141:179–199

    Google Scholar 

  • Ross AN (2012) Boundary-layer flow within and above a forest canopy of variable density. Q J R Meteorol Soc 138:1259–1272

    Google Scholar 

  • Ross AN, Baker TP (2013) Flow over partially forested ridges. Boundary-Layer Meteorol 146:375–392

    Google Scholar 

  • Ross AN, Harman IN (2015) The impact of source distribution on scalar transport over forested hills. Boundary-Layer Meteorol. 156:211–230

    Google Scholar 

  • Ross AN, Vosper SB (2005) Neutral turbulent flow over forested hills. Q J R Meteorol Soc 131:1841–1862

    Google Scholar 

  • Ross AN, Arnold S, Vosper SB, Mobbs SD, Dixon N, Robins AG (2004) A comparison of wind-tunnel experiments and numerical simulations of neutral and stratified flow over a hill. Boundary-Layer Meteorol 113:427–459

    Google Scholar 

  • Rotach MW, Zardi D (2007) On the boundary-layer structure over highly complex terrain: key findings from MAP. Q J R Meteorol Soc 133:937–948

    Google Scholar 

  • Rotach MW, Calanca P,Vogt R, Steyn DG, Graziani G, Andretta M, Christen A, Cieslik SA, Connolly RN, Galmarini S, Van Gorsel E, Gurtz J, Kadyrov E, Neininger B, Rucker M, Weber H, Weiss A, De Wekker S, Zappa M (2004) The turbulence structure and exchange processes in an Alpine valley: the Riviera project. Bull Am Meteorol Soc 85(9):1367–1385

    Google Scholar 

  • Rotach MW, Andretta M, Calanca P (2008) Boundary layer characteristics and turbulent exchange mechanisms in highly complex terrain. Acta Geophys 56:194–219

    Google Scholar 

  • Salmon JR, Teunissen HW, Mickle RE, Taylor PA (1988) The kettles hill project: field observations, wind tunnel simulations and numerical model predictions for flow over a low hill. Boundary-Layer Meteorol. 43:309–343

    Google Scholar 

  • Schmidli J, Rotunno R (2010) Mechanisms of along-valley winds and heat exchange over mountainous terrain. J Atmos Sci 67(9):3033–3047

    Google Scholar 

  • Schumann U (1990) Large-eddy simulation of the upslope boundary layer. Q J R Meteorol Soc 116:637–670

    Google Scholar 

  • Scorer RS (1949) Theory of waves in the lee of mountains. Q J R Meteorol Soc 76:41–56

    Google Scholar 

  • Serafin S, De Wekker SFJ, Knievel JC (2016) A mesoscale model-based climatography of nocturnal boundary-layer characteristics over the complex terrain of North-Western Utah. Boundary-Layer Meteorol 159:495–519

    Google Scholar 

  • Sfyri E, Rotach MW, Stiperski I (2018) Scalar-flux similarity in the layer near the surface over mountainous terrain. Boundary-Layer Meteorol 169:11–46

    Google Scholar 

  • Shapiro A, Fedorovich E (2014) A boundary-layer scaling for turbulent katabatic flow. Boundary-Layer Meteorol 153:1–17

    Google Scholar 

  • Shapiro A, Burkholder B, Fedorovich E (2012) Analytical and numerical investigation of two-dimensional katabatic flow resulting from local surface cooling. Boundary-Layer Meteorol 145:249–272

    Google Scholar 

  • Shaw RH, Schumann U (1992) Large-eddy simulation of turbulent flow above and within a forest. Boundary-Layer Meteorol 61:47–64

    Google Scholar 

  • Sheridan WP, Vosper SB, Mobbs SD (2004) Rotors and downslope winds in the Falklands. Bull Am Meteorol Soc 85(8):1059–1060

    Google Scholar 

  • Shin HH, Hong SY (2015) Representation of the subgrid-scale turbulent transport in convective boundary layers at gray-zone resolutions. Mon Weather Rev 143:250–271

    Google Scholar 

  • Silva Lopes A, Palma JMLM, Castro FA (2007) Simulation of the Askervein flow. Part 2: large-eddy simulations. Boundary-Layer Meteorol 125:85–108

    Google Scholar 

  • Skyllingstad ED (2003) Large-eddy simulation of katabatic flows. Boundary-Layer Meteorol 106:217–243

    Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (1998) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part I: a combination of katabatic and large-scale forcing. Boundary-Layer Meteorol 87:117–145

    Google Scholar 

  • Smeets CJPP, Duynkerke PG, Vugts HF (2000) Turbulence characteristics of the stable boundary layer over a mid-latitude glacier. Part II: pure katabatic forcing conditions. Boundary-Layer Meteorol 97:73–107

    Google Scholar 

  • Smith CM, Skyllingstad ED (2005) Numerical simulation of katabatic flow with changing slope angle. Mon Weather Rev 133:3065–3080

    Google Scholar 

  • Söderberg S, Parmhed O (2006) Numerical modelling of katabatic flow over a melting outflow glacier. Boundary-Layer Meteorol 120:509–534

    Google Scholar 

  • Sogachev A (2009) A note on two-equation closure modeling of canopy flow. Boundary-Layer Meteorol 130:423–435

    Google Scholar 

  • Sogachev A, Panferov O (2006) Modification of two-equation models to account for plant drag. Boundary-Layer Meteorol 121:229–266

    Google Scholar 

  • Soler MR, Infante C, Buenestado P, Mahrt L (2002) Observations of nocturnal drainage flow in a shallow gully. Boundary-Layer Meteorol 105:253–273

    Google Scholar 

  • Soler MR, Udina M, Ferreres E (2014) Observational and numerical simulation study of a sequence of eight atmospheric density currents in Northern Spain. Boundary-Layer Meteorol 153:195–216

    Google Scholar 

  • Stiperski I, Calaf M (2017) Dependence of near-surface similarity scaling on the anisotropy of atmospheric turbulence. Q J R Meteorol Soc 144:641–657

    Google Scholar 

  • Stiperski I, Rotach MW (2016) On the measurement of turbulence over complex mountainous terrain. Boundary-Layer Meteorol 159:97–121

    Google Scholar 

  • Stiperski I, Calaf M, Rotach MW (2019) Scaling, anisotropy, and complexity in near-surface atmospheric turbulence. J Geophys Res 124(3):1428–1448

    Google Scholar 

  • Sykes R (1980) An asymptotic theory of incompressible turbulent boundary layer flow over a small hump. J Fluid Mech 101:647–670

    Google Scholar 

  • Takahashi T, Kato S, Murakami S, Ooka R, Fassy Yassin M, Kono R (2005) Wind tunnel tests of effects of atmospheric stability on turbulent flow over a three-dimensional hill. J Wind Eng Ind Aerodyn 9:155–169

    Google Scholar 

  • Talbot C, Bou-Zeid E, Smith J (2012) Nested mesoscale large-eddy simulations with WRF: performance in real test cases. J Hydrometeorol 13(5):1421–1441

    Google Scholar 

  • Tampieri F (1987) Separation features of boundary-layer flow over valleys. Boundary-Layer Meteorol 40:295–307

    Google Scholar 

  • Tamura T, Okuno A, Sugio Y (2007) LES analysis of turbulent boundary layer over 3D steep hill covered with vegetation. J Wind Eng Ind Aerodyn 95:1463–1475

    Google Scholar 

  • Taylor PA (1977a) Some numerical studies of surface boundary layer flow above gentle topography. Boundary-Layer Meteorol 11:439–465

    Google Scholar 

  • Taylor PA (1977b) Numerical studies of neutrally stratified planetary boundary-layer flow above gentle topography: two-dimensional cases. Boundary-Layer Meteorol 12:37–60

    Google Scholar 

  • Taylor PA, Gent PR (1974) A model of atmospheric boundary-layer flow above an isolated two-dimensional “hill”; an example of flow above “gentle topography”. Boundary-Layer Meteorol 7:349–362

    Google Scholar 

  • Taylor PA, Lee RJ (1984) Simple guidelines for estimating wind speed variations due to small scale topographic features. Climatol Bull 18(2):3–32

    Google Scholar 

  • Taylor PA, Teunissen HW (1985) The Askervein Hill Project; Report on the September/October 1983 Main Field Experiment, Internal Report MSRB-84-6, Atmospheric Environment Service, Downsview, Ontario, Canada

  • Taylor PA, Teunissen HW (1987) Askervein hill project: overview and background data. Boundary-Layer Meteorol 39:15–39

    Google Scholar 

  • Taylor PA, Gent PR, Keen JM (1976) Some numerical solutions for turbulent boundary layer flow above fixed, rough, wavy surfaces. Geophys J Int 44(1):177–201

    Google Scholar 

  • Taylor PA, Walmsley J, Salmon JR (1983) A simple model of neutrally stratified boundary-layer flow over real terrain incorporating wavenumber-dependent scaling. Boundary-Layer Meteorol 26:169–189

    Google Scholar 

  • Taylor PA, Mason PJ, Bradley EF (1987) Boundary-layer flow over low hills. Boundary-Layer Meteorol 39:107–132

    Google Scholar 

  • Taylor PA, Sykes RI, Mason PJ (1989) On the parametrization of drag over small-scale topography in neutrally-stratified boundary-layer flow. Boundary-Layer Meteorol 48:409–422

    Google Scholar 

  • Teunissen HW, Shokr ME (1985a) The Askervein Hill Project: Wind-Tunnel Simulation (Smooth Model) at Length Scale 1: 1200, Research Report MSRB-85–1, Atmospheric Environment Service, Downsview, Ontario, Canada

  • Teunissen HW, Shokr M E (1985b) wind-tunnel/full-scale comparisons of boundary-layer flow over Askervein Hill, Scotland. In: Proceedings Asia Pacific symposium on wind engineering, held at Univ. of Roorkee, Roorkee, India, December 5–7, 1985

  • Teunissen HW, Shokr ME, Bowen AJ (1987) The Askervein Hill Project: wind-tunnel simulations at three length scales. Boundary-Layer Meteorol 40:1–29

    Google Scholar 

  • Trachte K, Nauss T, Bendix J (2010) The impact of different terrain configurations on the formation and dynamics of katabatic flows: idealised case studies. Boundary-Layer Meteorol 134:307–325

    Google Scholar 

  • Troen I, Petersen EL (1989) The European wind atlas. Risø National Lab., Roskilde

    Google Scholar 

  • Umphrey C, DeLeon R, Senocak I (2017) Direct numerical simulation of turbulent katabatic slope flows with an immersed-boundary method. Boundary-Layer Meteorol 164:367–382

    Google Scholar 

  • Undheim O, Andersson HI, Berge E (2006) Non-linear, microscale modelling of the flow over Askervein Hill. Boundary-Layer Meteorol 120:477–495

    Google Scholar 

  • Van Der Avoird E, Duynkerke PG (1999) Turbulence in a katabatic flow. Boundary-Layer Meteorol 92:37–63

    Google Scholar 

  • van Gorsel E, Christen A, Feigenwinter C, Parlow E, Vogt R (2003) Daytime turbulence statistics above a steep forested slope. Boundary-Layer Meteorol 109:311–329

    Google Scholar 

  • van Gorsel E, Harman IN, Finnigan JJ, Leuning R (2011) Decoupling of airflow above and in plant canopies and gravity waves affect micrometeorological estimates of net scalar exchange. Agric For Meteorol 151:927–933

    Google Scholar 

  • Vasiljević N, Palma JMLM, Angelou N, Carlos Matos J, Menke R, Lea G, Mann J, Courtney M, Frölen Ribeiro L, Gomes VMMGC (2017) Perdigão 2015: methodology for atmospheric multi-Doppler lidar experiments. Atmos Meas Tech 10:3463–3483

    Google Scholar 

  • Vosper SB, Mobbs SD (1997) Measurement of the pressure field on a mountain. Q J R Meteorol Soc 123:129–144

    Google Scholar 

  • Vosper SB, Mobbs SD, Gardiner BA (2002) Measurements of the near-surface flow over a hill. Q J R Meteorol Soc 128:2257–2280

    Google Scholar 

  • Wagner A (1938) Theorie und Beobachtung der periodischen Gebirgswinde [English Translation from Atmospheric studies in complex terrain. Technical progress report, FY 1979-FY 1983]. Gerlands Beitraege zur Geophysik 52:408–449

    Google Scholar 

  • Walko RL, Cotton WR, Pielke RA (1992) Large-eddy simulations of the effects of hilly terrain on the convective boundary layer. Boundary-Layer Meteorol 58:133–150

    Google Scholar 

  • Walmsley JL, Taylor PA (1996) Boundary-layer flow over topography: impacts of the Askervein Study. Boundary-Layer Meteorol 78:291–320

    Google Scholar 

  • Walmsley JL, Taylor PA, Mok R (1980) MS3DJH - A computer model for the study of neutrally stratified boundary-layer flow over isolated hills of moderate slope, Rep. AQRB-80-008-L, Atmos. Environment Service, Downsview, Ontario

  • Walmsley JL, Salmon JR, Taylor PA (1982) On the application of a model of boundary-layer flow over low hills to real terrain. Boundary-Layer Meteorol 23:17–46

    Google Scholar 

  • Walmsley JL, Taylor PA, Keith T (1986) A simple model of neutrally stratified boundary-layer flow over complex terrain with surface roughness modulations (MS3DJH/3R). Boundary-Layer Meteorol 36:157–186

    Google Scholar 

  • Wan F, Porté-Agel F (2011) Large-eddy simulation of stably-stratified flow over a steep hill. Boundary-Layer Meteorol 138:367–384

    Google Scholar 

  • Wan F, Porté-Agel F, Stoll R (2007) Evaluation of dynamic subgrid-scale models in large-eddy simulations of neutral turbulent flow over a two-dimensional sinusoidal hill. Atmos Environ 41:2719–2728

  • Watanabe T (1994) Bulk parameterization for a vegetated surface and its application to a simulation of nocturnal drainage flow. Boundary-Layer Meteorol 70:13–35

    Google Scholar 

  • Weigel AP, Chow FK, Rotach MW (2007) The effect of mountainous topography on moisture exchange between the “surface” and the free atmosphere. Boundary-Layer Meteorol 125:227–244

    Google Scholar 

  • Weng W (1997) Stably stratified boundary-layer flow over low hills: a comparison of model results and field data. Boundary-Layer Meteorol 85:223–241

    Google Scholar 

  • Weng W, Taylor PA (2011) A non-linear mixed spectral finite-difference 3-D model for planetary boundary-layer flow over complex terrain. Adv Sci Res 6:75–78

    Google Scholar 

  • Weng W, Chan L, Taylor PA, Xu D (1997) Modelling stably stratified boundary layer flow over low hills’. Q J R Meteorol Soc 123:1841–1866

    Google Scholar 

  • Whiteman CD (1990) Observations of thermally developed wind systems in mountainous terrain. In: Blumen W (ed) Atmospheric processes over complex terrain, meteorological monographs, vol 45. American Meteorological Society, Boston, pp 5–42

    Google Scholar 

  • Whiteman CD, Zhong S (2008) Downslope flows in a low-angle slope and their interactions with valley inversions. Part I: observations. J Appl Meteorol Climatol 47:2023–2038

    Google Scholar 

  • Whiteman CD, Hoch SW, Lehner M, Haiden T (2010) Nocturnal cold-air intrusions into a closed basin: observational evidence and conceptual model. J Appl Meteorol Climatol 49:1894–1905

    Google Scholar 

  • Wilson JD, Finnigan JJ, Raupach MR (1998) A first-order closure for disturbed plant-canopy flows and its application to winds in a canopy on a ridge. Q J R Meteorol Soc 124:705–732

    Google Scholar 

  • Wood N (1995) The onset of flow separation in neutral, turbulent flow over hills. Boundary-Layer Meteorol 76:137–164

    Google Scholar 

  • Wood N (2000) Wind flow over complex terrain: a historical perspective and the prospect for large-eddy modelling. Boundary-Layer Meteorol 96:11–32

    Google Scholar 

  • Wood N, Mason PJ (1991) The influence of static stability on the effective roughness lengths for momentum and heat transfer. Q J R Meteorol Soc 117:1025–1056

    Google Scholar 

  • Wood N, Mason PJ (1993) The pressure force induced by neutral, turbulent flow over hills. Q J R Meteorol Soc 119:1233–1267

    Google Scholar 

  • Wyngaard JC (2004) Toward numerical modeling in the “terra incognita”. J Atmos Sci 61:1816–18226

    Google Scholar 

  • Xu D, Taylor PA (1992) A non-linear extension of the mixed spectral finite difference model for neutrally stratified turbulent flow over topography. Boundary-Layer Meteorol 59:177–186

    Google Scholar 

  • Xu D, Ayotte KW, Taylor PA (1994) Development of a non-linear mixed spectral finite difference model for turbulent boundary layer flow over topography. Boundary-Layer Meteorol 70:341–367

    Google Scholar 

  • Ye ZJ, Garratt JR, Segal M, Pielke RA (1990) On the impact of atmospheric thermal stability on the characteristics of nocturnal downslope flows. Boundary-Layer Meteorol 51:77–97

    Google Scholar 

  • Yi C, Monson RK, Zhai Z, Anderson DE, Lamb B, Allwine G, Turnipseed AA, Burns SP (2005) Modeling and measuring the nocturnal drainage flow in a high-elevation, subalpine forest with complex terrain. J Geophys Res 110:D22303. https://doi.org/10.1029/2005JD006282

    Article  Google Scholar 

  • Yu Y, Cai X-M (2006) Structure and dynamics of katabatic flow jumps: idealised simulations. Boundary-Layer Meteorol 118:527–555

    Google Scholar 

  • Yu Y, Cai X, King JC, Renfrew IA (2005) Numerical simulations of katabatic jumps in coats land, Antarctica. Bound-Layer Meteorol 114:413–437

    Google Scholar 

  • Zardi D, Whiteman CD (2013) Diurnal mountain wind systems. In: Chow FK, De Wekker SFJ, Snyder BJ (eds) Mountain weather research and forecasting: recent progress and current challenges. Springer, Dordrecht, pp 35–119

    Google Scholar 

  • Zeman O, Jensen NO (1987) Modification of turbulence characteristics in flow over hills. Q J R Meteorol Soc 113:55–80

    Google Scholar 

  • Zeri M, Rebmann C, Feigenwinter C, Sedlake P (2010) Analysis of periods with strong and coherent CO2 advection over a forested hill. Agric For Meteorol 150:674–683

    Google Scholar 

  • Zilitinkevich SS, Elperin T, Kleeorin N (2009) Energy- and flux-budget turbulence closure model for stably stratified flows. Part II: the role of internal gravity waves. Boundary-Layer Meteorol 133:139–164

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Finnigan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finnigan, J., Ayotte, K., Harman, I. et al. Boundary-Layer Flow Over Complex Topography. Boundary-Layer Meteorol 177, 247–313 (2020). https://doi.org/10.1007/s10546-020-00564-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10546-020-00564-3

Keywords

Navigation