Skip to main content

A Season of Eddy-Covariance Fluxes Above an Extensive Water Body Based on Observations from a Floating Platform

Abstract

The eddy-covariance (EC) technique is used to determine mass and energy fluxes between the Earth’s surface and the lower atmosphere at high temporal resolution. Despite the frequent and successful use of the EC technique at terrestrial sites, its application over water surfaces is rare. We present one season of EC measurements conducted on the Rappbode Reservoir, Germany’s largest drinking water reservoir. A floating observation platform in the centre of the reservoir is used for observations of fluxes that were unaffected by surrounding land surfaces and therefore representative of the actual water–atmosphere exchange. The temporal patterns of sensible heat flux are inverted compared to land sites, since the maxima and the minima occur at night and day respectively. The latent heat flux and the evaporation are unexpectedly low for a site where evaporation is not limited by the availability of water. The daily totals in summer and autumn are only 50% and 75% of the potential evaporation assessed by the FAO grass-reference evaporation, respectively. Measurement uncertainties and the effects of the energy balance closure are ruled out as potential factors, so that low values appear to be a general feature of large water surfaces. The observed carbon dioxide fluxes are characterized by distinctive diurnal variations in a typical range for lakes and reservoirs. However, the methane fluxes are low compared to other inland waters.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  1. Allen RG, Pereira LS, Raes D, Smith M (1998) Crop evaporation. FAO irrigation and drainage paper no. 56, 300 pp

  2. Aubinet M, Grelle A, Ibrom A, Rannik Ü, Moncrieff J, Foken T, Kowalski AS, Martin PH, Berbigier P, Bernhofer C, ClementR Elbers J, Granier A, Grünwald T, Morgenstern K, Pilegaard K, Rebmann C, Snijders W, Valentini R, Vesala T (1999) Estimates of the annual net carbon and water exchange of forests: the EUROFLUX methodology. Adv Ecol Res 30:113–175

    Google Scholar 

  3. Aubinet M, Vesala T, Papale D (2012) Eddy covariance: a practical guide to measurement and data analysis. Springer Atmospheric Sciences, Dordrecht

    Google Scholar 

  4. Barr AG, Morgenstern K, Black TA, McCaughey JH, Nesic Z (2006) Surface energy balance closure by the eddy-covariance method above three boreal forest stands and implications for the measurement of the CO2 flux. Agric For Meteorol 140:322–337

    Google Scholar 

  5. Barros N, Cole JJ, Tranvik LJ, Prairie YT, Bastviken D, Huszar VLM, del Giorgio P, Roland F (2011) Carbon emission from hydroelectric reservoirs linked to reservoir age and latitude. Nat Geosci 4:593–596

    Google Scholar 

  6. Bastviken D, Cole J, Pace M, Tranvik L (2004) Methane emissions from lakes: dependence of lake characteristics, two regional assessments, and a global estimate. Glob Biogeochem Cycles 18:GB4009

    Google Scholar 

  7. Bastviken D, Tranvik LJ, Downing JA, Crill PM, Enrich-Prast A (2011) Freshwater methane emissions offset the continental carbon sink. Science 331:50

    Google Scholar 

  8. Baumgartner A, Liebscher HJ (1996) Lehrbuch der Hydrologie. 1: Allgemeine Hydrologie - quantitative hydrologie. Gebrüder Bornträger, Berlin, 673 pp

  9. Beyrich F, Leps J-P, Mauder M, Bange J, Foken T, Huneke S, Lohse H, Lüdi A, Meijninger WML, Mironov D, Weisensee U, Zittel P (2006) Area-averaged surface fluxes over the LITFASS region based on eddy-covariance measurements. Boundary-Layer Meteorol 121:33–65

    Google Scholar 

  10. Biermann T, Babel W, Ma W, Chen X, Thiem E, Ma Y, Foken T (2014) Turbulent flux observations and modelling over a shallow lake and a wet grassland in the Nam Co basin, Tibetan Plateau. Theor Appl Climatol 116:301–316

    Google Scholar 

  11. Blanken PD, Black TA, Yang PC, Neumann HH, Nesic Z, Staebler R, den Hartog G, Novak MD, Lee X (1997) Energy balance and canopy conductance of a boreal aspen forest: partitioning overstory and understory components. J Geophys Res Atmos 102:28915–28927

    Google Scholar 

  12. Brust K (2017) The impact of climate and land use on surface fluxes of matter and energy: a measurement and model study. Dissertation, Technische Universität Dresden, Dresden, Germany. http://pdf.hydro-consult.de/2017_Thesis_Dissertation_Kristina_Brust_Tharandter_Klimaprotokolle_Band_23.pdf. Last access 05.02.2019

  13. Brust K, Hehn M, Bernhofer C (2012) Comparative analysis of matter and energy fluxes determined by Bowen ratio and eddy covariance techniques at a crop site in eastern Germany. EGU general assembly conference abstracts, p 8006

  14. Burba GG (2013) Eddy covariance method for scientific, industrial, agricultural, and regulatory applications: a field book on measuring ecosystem gas exchange and areal emission rates. LI-COR Biosciences, Lincoln Nebraska, 332 pp

  15. Burba GG, Anderson D (2010) A brief practical guide to eddy covariance flux measurements: principles and workflow examples for scientific and industrial applications. LI-COR Biosciences, Lincoln Nebraska, 213 pp

  16. Ceschia E, Bernhofer C, Béziatg P, Carrarai A, Di Tommasi P, Grünwald T, Jones M, Magliulo V, Marloie O, Moureaux C, Oliosol A, Sanz MJ, Saunders M, Søgaard H, Ziegler W (2010a) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345

    Google Scholar 

  17. Ceschia E, Béziat P, Dejoux JF, Aubinet M, Bernhofer C, Bodson B, Buchmann N, Carrara A, Cellier P, Di Tommasi P, Elbersi JA, Eugster W, Grünwald T, Jacobs CMJ, Jans WWP, Jones M, Kutsch W, Lanigan G, Magliulo E, Marloie M, Moors EJ, Moureaux C, Olioso A, Osborne B, Sanz MJ, Saunders M, Smith P, Soegaard H, Wattenbach M (2010b) Management effects on net ecosystem carbon and GHG budgets at European crop sites. Agric Ecosyst Environ 139:363–383

    Google Scholar 

  18. Chamberlain SD, Verfaillie J, Eichelmann E, Hemes KS, Baldocchi DD (2017) Evaluation of density corrections to methane fluxes measured by open-path eddy covariance over contrasting landscapes. Boundary-Layer Meteorol 165:197–210

    Google Scholar 

  19. Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10(1):172–185

    Google Scholar 

  20. Deemer BR, Harrison JA, Li S, Beaulieu JJ, Del Sontro T, Barros N, Bezerra-Neto JF, Powers SM, dos Santos MA, Vonk JA (2016) Greenhouse gas emissions from reservoir water surfaces: a new global synthesis. Bioscience 66(11):949–964

    Google Scholar 

  21. Del Sontro T, Beaulieu JJ, Downing JA (2018a) Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol Oceanogr Lett 3:64–75

    Google Scholar 

  22. Del Sontro T, del Giorgio PA, Prairie YT (2018b) No longer a paradox: the interaction between physical transport and biological processes explains the spatial distribution of surface water methane within and across lakes. Ecosystems 21:1073–1087

    Google Scholar 

  23. Dingman SL (2008) Physical hydrology, 2nd edn. Prentice Hall, Upper Saddle River, 646 pp

  24. Dones R, Heck T, Hirschberg S (2004) Greenhouse gas emissions from energy systems: comparison and overview. In: Smith B, Gschwend B (eds) Scientific report 2003, vol IV. Nuclear energy and safety. Paul Scherrer, Villigen, pp 27–40

    Google Scholar 

  25. dos Santos MA, Rosa LP, Sikar B, Sikar E, dos Santos EO (2006) Gross greenhouse gas fluxes from hydro-power reservoir compared to thermo-power plants. Energy Policy 34:481–488

    Google Scholar 

  26. Dyck S, Peschke G (1995) Grundlagen der Hydrologie. Verlag für Bauwesen, Berlin, 536 pp

  27. Eugster W, Del Sontro T, Sobek S (2011) Eddy covariance flux measurements confirm extreme CH4 emissions from a Swiss hydropower reservoir and resolve their short-term variability. Biogeosciences 8:2815–2831

    Google Scholar 

  28. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Grainer A, Grünwald T, Hollinger D, Jensen NO, Katul G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker AE, Tenhunen J, Tu K, Verma S, Vesala T (2001a) Gap filling strategies for defensible annual sums of net ecosystem exchange. Agric For Meteorol 107:43–69

    Google Scholar 

  29. Falge E, Baldocchi D, Olson R, Anthoni P, Aubinet M, Bernhofer C, Burba G, Ceulemans R, Clement R, Dolman H, Granier A, Gross P, Grünwald T, Hollinger D, Jensen NO, Katulm G, Keronen P, Kowalski A, Ta Lai C, Law BE, Meyers T, Moncrieff J, Moors E, Munger JW, Pilegaard K, Rannik Ü, Rebmann C, Suyker A, Tenhunen J, Tu K, Verma S, Vesala T, Wilson K, Wofsy S et al (2001b) Gap filling strategies for long term energy flux data sets. Agric For Meteorol 107:71–77

    Google Scholar 

  30. FAO (Food and Agricultural Organization of the United Nations) (2009) ET0 calculator. http://www.fao.org/land-water/databases-and-software/eto-calculator/en/. Last access 25 Apr 2019

  31. Fearnside PM (1997) Greenhouse-gas emissions from Amazonian hydroelectric reservoirs: the example of Brazil’s Tucuruí Dam as compared to fossil fuel alternatives. Environ Conserv 24:64–75

    Google Scholar 

  32. Fearnside PM (2004) Greenhouse gas emissions from hydroelectric dams: controversies provide a springboard for rethinking a supposedly ‘clean’ energy source. Clim Change 66:1–8

    Google Scholar 

  33. Foken T (2008a) Micrometeorology. Springer, Berlin, 308 pp

  34. Foken T (2008b) The energy balance closure problem: an overview. Ecol Appl 18:1351–1367

    Google Scholar 

  35. Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. Agric For Meteorol 78:83–105

    Google Scholar 

  36. Foken T, Aubinet M, Leuning R (2012) The eddy covariance method. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance. Springer, Dordrecht, pp 1–19

    Google Scholar 

  37. Franssen HJH, Stöckli R, Lehner I, Rotenberg E, Seneviratne SI (2010) Energy balance closure of eddy-covariance data: a multisite analysis for European FLUXNET stations. Agric For Meteorol 150:1553–1567

    Google Scholar 

  38. Franz D, Acosta M, Altimir N, Arriga N, Arrouays D, Aubinet M, Aurela M, Ayres E, López-Ballesteros A, Barbaste M, Berveiller D, Biraud S, Boukir H, Brown T, Brümmer C, Buchmann N, Burba G, Carrara A, Cescatti A, Ceschia E, Clement R, Cremonese E, Crill P, Darenova E, Dengel S, D’Odorico P, Filippa G, Fleck S, Fratini G, Fuß R, Gielen B, Gogo S, Grace J, Graf A, Grelle A, Gross P, Grünwald T, Haapanala S, Hehn M, Heinesch B, Heiskanen J, Herbst M, Herschlein C, Hörtnagl L, Hufkens K, Ibrom A, JolivetC Joly L, Jones M, Kiese R, Klemedtsson L, Kljun N, Klumpp K, Kolari P, Kolle O, Kowalski A, Kutsch W, Laurila T, de Ligne A, Linder S, Lindroth A, Lohila A, Longdoz B, Mammarella I, Manise T, Jiménez SM, Matteucci G, Mauder M, Meier P, Merbold L, Mereu S, Metzger S, Migliavacca M, Mölder M, Montagnani L, Moureaux C, Nelson D, Nemitz E, Nicolini G, Nilsson MB, de Beeck MO, Osborne B, Löfvenius MO, Pavelka M, Peichl M, Peltola O, Pihlatie M, Pitacco A, Pokorný R, Pumpanen J, Ratié C, Rebmann C, Roland M, Sabbatini S, Saby NPA, Saunders M, Schmid HP, Schrumpf M, Sedlák P, Ortiz PS, Siebicke L, Šigut L, Silvennoinen H, Simioni G, Skiba U, Sonnentag O, Soudani K, Soulé P, Steinbrecher R, Tallec T, Thimonier A, Tuittila E-S, Tuovinen J-P, Vestin P, Vincent G, Vincke C, Vitale D, Waldner P, Weslien P, Wingate L, Wohlfahrt G, Zahniser M, Vesala T (2018a) Towards long-term standardised carbon and greenhouse gas observations for monitoring Europe’s terrestrial ecosystems: a review. Int Agrophys 32:439–455

    Google Scholar 

  39. Franz D, Mammarella I, Boike J, Kirillin G, Vesala T, Bornemann N, Larmanou E, Langer M, Sachs T (2018b) Lake-atmosphere heat flux dynamics of a thermokarst lake in arctic Siberia. J Geophys Res Atmos 123:5222–5239

    Google Scholar 

  40. Halbedel S, Koschorreck M (2013) Regulation of CO2 emissions from temperate streams and reservoirs. Biogeosciences 10:7539–7551

    Google Scholar 

  41. Holgerson MA, Raymond PA (2016) Large contribution to inland water CO2 and CH4 emissions from very small ponds. Nat Geosci 9:222–226

    Google Scholar 

  42. Huotari J, Ojala A, Peltomaa E, Nordbo A, Launiainen S, Pumpanen J, Rasilo T, Hari P, Vesala T (2011) Long-term direct CO2 flux measurements over a boreal lake: five years of eddy covariance data. Geophys Res Lett 38:L18401

    Google Scholar 

  43. Ibrom A, Dellwik E, Larsen SE, Pilegaard K (2007) On the use of the Webb–Pearman–Leuning theory for closed-path eddy correlation measurements. Tellus B Chem Phys Meteorol 59:937–946

    Google Scholar 

  44. IPCC (2013) Climate change 2013: the physical science basis. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge. https://www.ipcc.ch/report/ar5/wg1/. Last access 5 Feb 2019

  45. Jung M, Reichstein M, Margolis HA, Cescatti A, Richardson AD, Arain MA, Arneth A, Bernhofer C, Bonal D, Chen J, Gianelle D, Gobron N, Kiely G, Kutsch W, Lasslop G, Law BE, Lindroth A, Merbold L, Montagnani L, Moors EJ, Papale D, Sottocornola M, Vaccari F, Williams C (2011) Global patterns of land-atmosphere fluxes of carbon dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations. J Geophys Res 116:G00J07

    Google Scholar 

  46. Kaimal JC, Finnigan JJ (1994) Atmospheric boundary layer flows: their structure and measurement. Oxford University Press, New York, 304 pp

  47. Katerji N, Rana G (2006) Modelling evapotranspiration of six irrigated crops under Mediterranean climate conditions. Agric For Meteorol 138:142–155

    Google Scholar 

  48. Katerji N, Rana G (2011) Crop reference evapotranspiration: a discussion of the concept, analysis of the process and validation. Water Resour Manag 25:1581–1600

    Google Scholar 

  49. Katul G, Cava D, Pogg D, Albertson J, Mahrt L (2005) Stationarity, homogeneity, and ergodicity in canopy turbulence. In: Lee X, Law B, Massman W (eds) handbook of micrometeorology a guide for surface flux measurement and analysis. Kluwer Academic, Dordrecht, pp 161–180

    Google Scholar 

  50. Kljun N, Calanca P, Rotach M, Schmid H (2004) A simple parameterisation for flux footprint predictions. Boundary-Layer Meteorol 112:503–523

    Google Scholar 

  51. Kormann R, Meixner FX (2001) An analytical footprint model for non-neutral stratification. Boundary-Layer Meteorol 99:207–224

    Google Scholar 

  52. Kutsch WL, Aubinet M, Buchmann N, Smith P, Osborne B, Eugster W, Wattenbach M, Schrumpf M, Schulze ED, Tomelleri E, Ceschia E, Bernhofer C, Béziat P, Carrara A, Di Tommasi P, Grünwald T, Jones M, Magliulo V, Marloie O, Moureaux C, Olioso A, Sanz MJ, Saunders M, Søgaard H, Ziegler W (2010) The net biome production of full crop rotations in Europe. Agric Ecosyst Environ 139:336–345

    Google Scholar 

  53. Leclerc MY, Foken T (2014) Footprints in micrometeorology and ecology. Springer, Berlin, 239 pp

    Google Scholar 

  54. Lee X, Massman W (2011) A Perspective on thirty years of the Webb, Pearman and Leuning density corrections. Boundary-Layer Meteorol 139:37–59

    Google Scholar 

  55. Lee X, Law B, Massman W (2004) Handbook of micrometeorology a guide for surface flux measurement and analysis. Kluwer Academic, Dordrecht, 250 pp

  56. Lee X, Liu S, Xiao W, Wang W, Gao Z, Cao C, Hu C, Hu Z, Shen S, Wang Y, Wen X, Xiao Q, Xu J, Yang J, Zhang M (2014) The Taihu eddy flux network: an observational program on energy, water and greenhouse gas fluxes of a large freshwater lake. Bull Am Meteorol Soc . https://doi.org/10.1175/BAMS-D-13-00136.1

    Article  Google Scholar 

  57. Leuning R, Moncrieff J (1990) Eddy-covariance CO2 flux measurements using open- and closed-path CO2 analyzers: corrections for analyzer water vapour sensitivity and damping of fluctuations in air sampling tubes. Boundary-Layer Meteorol 53:63–76

    Google Scholar 

  58. Leuning R, van Gorsel E, Massman W, Isaac PR (2012) Reflections on the surface energy imbalance problem. Agric For Meteorol 156:65–74

    Google Scholar 

  59. LI-COR Biosciences (2017) EddyPro. https://www.licor.com/env/products/eddy_covariance/software.html. Last access 6 Feb 2019

  60. Long MH, Nicholson DP (2018) Surface gas exchange determined from an aquatic eddy covariance floating platform. Limnol Oceanogr Methods 16:145–159

    Google Scholar 

  61. Maeck A, Del Sontro T, McGinnis DF, Fischer H, Flury S, Schmidt M, Fietzek P, Lorke A (2013a) Sediment trapping by dams creates methane emission hot spots. Environ Sci Technol 47:8130–8137

    Google Scholar 

  62. Maeck A, Hofmann H, Lorke A (2013b) Pumping methane out of aquatic sediments—forcing mechanisms that affect the temporal dynamics of ebullition. Biogeosci Discuss 10:18687–18722

    Google Scholar 

  63. Maeck A, Hofmann H, Lorke A (2014) Pumping methane out of aquatic sediments—ebullition forcing mechanisms in an impounded river. Biogeosciences 11:2925–2938

    Google Scholar 

  64. Mammarella I, Nordbo A, Rannik Ü, Haapanala S, Levula J, Laakso H, Ojala A, Peltola O, Heiskanen J, Pumpanen J, Vesala T (2015) Carbon dioxide and energy fluxes over a small boreal lake in Southern Finland. J Geophys Res Biogeosci 120:2014JG002873

    Google Scholar 

  65. Massman WJ (2000) A simple method for estimating frequency response corrections for eddy covariance systems. Agric For Meteorol 104:185–198

    Google Scholar 

  66. Massman W (2001) Reply to comment by Rannik on “A simple method for estimating frequency response corrections for eddy covariance systems.”. Agric For Meteorol 107:247–251

    Google Scholar 

  67. Massman W, Ibrom A (2008) Attenuation of concentration fluctuations of water vapor and other trace gases in turbulent tube flow. Atmos Chem Phys 8:6245–6259

    Google Scholar 

  68. Mauder MA (2013) A comment on “How well can we measure the vertical wind speed? Implications for fluxes of energy and mass” by Kochendorfer et al. Boundary-Layer Meteorol 147:329–335

    Google Scholar 

  69. Mauder M, Liebethal C, Göckede M, Leps JP, Beyrich F, Foken T (2006) Processing and quality control of flux data during LITFASS-2003. Boundary-Layer Meteorol 121:67–88

    Google Scholar 

  70. McDermitt D, Burba G, Xu L, Anderson T, Komissarov A, Riensche B, Schedlbauer J, Starr G, Zona D, Oechel W, Oberbauer S, Hastings S (2011) A new low-power, open-path instrument for measuring methane flux by eddy covariance. Appl Phys B 102:391–405

    Google Scholar 

  71. McGinnis DF, Greinert J, Artemov Y, Beaubien SE, Wüest A (2006) Fate of rising methane bubbles in stratified waters: how much methane reaches the atmosphere? J Geophys Res Oceans 111:C09007

    Google Scholar 

  72. McMahon TA, Peel MC, Lowe L, Srikanthan R, McVicar TR (2013) Estimating actual, potential, reference crop and pan evaporation using standard meteorological data: a pragmatic synthesis. Hydrol Earth Syst Sci 17:1331–1363

    Google Scholar 

  73. Moderow U, Feigenwinter C, Bernhofer C (2006) Estimating the components of the sensible heat budget of a tall forest canopy in complex terrain. Bound Layer Meteorol 123:99–120

    Google Scholar 

  74. Moderow U, Aubinet M, Feigenwinter C, Kolle O, Lindroth A, Mölder M, Montagnani L, Rebmann C, Bernhofer C (2009) Available energy and energy balance closure at four coniferous forest sites across Europe. Theor Appl Climatol 98:397–412

    Google Scholar 

  75. Moffat AM, Papale D, Reichstein M, Hollinger DY, Richardson AD, Barr AG, Beckstein C, Braswell BH, Churkina G, Desai AR, Falge E, Gove JH, Heimann M, Hui D, Jarvis AJ, Kattge J, Noormets A, Stauch VJ (2007) Comprehensive comparison of gap-filling techniques for eddy covariance net carbon fluxes. Agric For Meteorol 147:209–232

    Google Scholar 

  76. Moncrieff JB, Massheder JM, de Bruin H, Elbers J, Friborg T, Heusinkveld B, Kabat P, Scott S, Soegaard H, Verhoef A (1997) A system to measure surface fluxes of momentum, sensible heat, water vapour and carbon dioxide. J Hydrol 188–189:589–611

    Google Scholar 

  77. Moncrieff JB, Clement R, Finnigan J, Meyers T (2004) Averaging, detrending and filtering of eddy covariance time series. In: Lee X, Massman WJ, Law BE (eds) Handbook of micrometeorology: a guide for surface flux measurements. Kluwer Academic, Dordrecht, pp 7–31

    Google Scholar 

  78. Monteith JL, Unsworth M (1990) Principles of environmental physics, 2nd edn. Elsevier, Oxford, 291 pp

    Google Scholar 

  79. Moore CJ (1986) Frequency response corrections for eddy correlation systems. Boundary-Layer Meteorol 37:17–35

    Google Scholar 

  80. Nemitz E, Mammarella I, Ibrom A, Aurela M, Burba GG, Dengel S, Gielen B, Grelle A, Heinesch B, Herbst M, Hörtnagl L, Klemedtsson L, Lindroth A, Lohila A, McDermitt DK, Meier P, Merbold L, Nelson D, Nicolini G, Nilsson MB, Peltola O, Rinne J, Zahniser M (2018) Standardisation of eddy-covariance flux measurements of methane and nitrous oxide. Int Agrophys 32:517–549

    Google Scholar 

  81. Nordbo A, Launiainen S, Mammarella I, Leppäranta M, Huotari J, Ojala A, Vesala T (2011) Long-term energy flux measurements and energy balance over a small boreal lake using eddy covariance technique. J Geophys Res Atmos 116:D02119

    Google Scholar 

  82. Oke TR (1987) Boundary layer climates, 2nd edn. Routledge, London, 235 pp

    Google Scholar 

  83. Oncley SP, Foken T, Vogt R, Kohsiek W, DeBruin H, Bernhofer C, Christen A, van Gorsel E, Grantz D, Feigenwinter C, Lehner I, Liebethal C, Liu H, Mauder M, Pitacco A, Ribeiro L, Weidinger T (2007) The energy balance experiment EBEX-2000, part I: overview and energy balance. Boundary-Layer Meteorol 123:1–28

    Google Scholar 

  84. Panin GN, Bernhofer C (2008) Parametrization of turbulent flux over inhomogeneous landscapes. Atmos Ocean Phys 44:701–716

    Google Scholar 

  85. Penman H (1948) Natural evaporation from open water, bare soil and grass. Proc R Soc Lond Ser Math Phys Sci 193:120–145

    Google Scholar 

  86. Podgrajsek E, Sahlée E, Rutgersson A (2014) Diurnal cycle of lake methane flux. J Geophys Res Biogeosci 119:236–248

    Google Scholar 

  87. Prairie YT, Alm J, Beaulieu J, Barros N, Battin T, Cole J, del Giorgio P, Del Sontro T, Guérin F, Harby A, Harrison J, Mercier-Blais S, Serça D, Sobek S, Vachon D (2017) Greenhouse gas emissions from freshwater reservoirs: what does the atmosphere see? Ecosystems 21(5):1058–1071

    Google Scholar 

  88. Pütz K, Benndorf J (1998) The importance of pre-reservoirs for the control of eutrophication of reservoirs. Water Sci Technol 37:317–324

    Google Scholar 

  89. Rannik Ü, Aubinet M, Kurbanmuradov O, Sabelfeld KK, Markkanen T, Vesala T (2000) Footprint analysis for measurements over a heterogeneous forest. Boundary-Layer Meteorol 97:137–166

    Google Scholar 

  90. Rannik Ü, Sogachev A, Foken T, Göckede M, Kljun N, Leclerc MY, Vesala T (2012) Footprint analysis. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer Atmospheric Sciences, Dordrecht, pp 211–261

    Google Scholar 

  91. Raymond PA, Hartmann J, Lauerwald R, Sobek S, McDonald C, Hoover M, Butman D, Striegl R, Mayorga E, Humborg C, Kortelainen P, Dürr H, Meybeck M, Ciais P, Guth P (2013) Global carbon dioxide emissions from inland waters. Nature 503:355–359

    Google Scholar 

  92. Rebmann C, Aubinet M, Schmid H, Arriga N, Aurela M, Burba G, Clement R, De Ligne A, Fratini G, Gielen B, Grace J, Graf A, Gross P, Haapanala S, Herbst M, Hörtnagl L, Ibrom A, Joly L, Kljun N, Kolle O, Kowalski A, Lindroth A, Loustau D, Mammarella I, Mauder M, Merbold L, Metzger S, Mölder M, Montagnani L, Papale D, Pavelka M, Peichl M, Roland M, Serrano-Ortiz P, Siebicke L, Steinbrecher R, Tuovinen J-P, Vesala T, Wohlfahrt G, Franz D (2018) ICOS eddy covariance flux-station site setup: a review. Int Agrophys 32:471–494

    Google Scholar 

  93. Reichstein M, Menzer O (2012) Online eddy covariance data gap-filling and flux-partitioning tool. http://www.bgc-jena.mpg.de/~MDIwork/eddyproc/. Last access 5 Feb 2019

  94. Reichstein M, Falge E, Baldocchi D, Papale D, Aubinet M, Berbigier P, Bernhofer C, Buchmann N, Gilmanov T, Granier A, Grünwald T, Havránková K, Ilvesniemi H, Janous D, Knohl A, Laurila T, Lohila L, Loustau D, Matteucci G, Meyer T, Miglietta F, Ourcival JM, Pumpanen J, Rambal S, Rotenberg E, Sanz M, Tenhunen J, Seufert G, Vaccari F, Vesala T, Yakir D, Valentini R (2005) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. Glob Change Biol 11:1424–1439

    Google Scholar 

  95. Richardson AD, Aubinet M, Barr AG, Hollinger DY, Ibrom A, Lasslop G, Reichstein M (2012) Uncertainty quantification. In: Aubinet M, Vesala T, Papale D (eds) Eddy covariance: a practical guide to measurement and data analysis. Springer Atmospheric Sciences, Dordrecht, pp 173–209

    Google Scholar 

  96. Rinke K, Kuehn B, Bocaniov S, Wendt-Potthoff K, Büttner O, Tittel J, Schultze M, Herzsprung P, Rönicke H, Rink K, Rinke K, Dietze M, Matthes M, Paul L, Friese K (2013) Reservoirs as sentinels of catchments: the Rappbode Reservoir Observatory (Harz Mountains, Germany). Environ Earth Sci 69(2):523–536

    Google Scholar 

  97. Sabbatini S, Mammarella I, Arriga N, Fratini G, Graf A, Hörtnagl L, Ibrom A, Longdoz B, Mauder M, Merbold L, Metzger S, Montagnani L, Pitacco A, Rebmann C, Sedlák P, Šigut L, Vitale D, Papale D (2018) Eddy covariance raw data processing for CO2 and energy fluxes calculation at ICOS ecosystem stations. Int Agrophys 32:495–515

    Google Scholar 

  98. Saidi H, Koschorreck M (2017) CO2 emissions from German drinking water reservoirs. Sci Total Environ 581:10–18

    Google Scholar 

  99. Schmidt U, Conrad R (1993) Hydrogen, carbon-monoxide, and methane dynamics in lake constance. Limnol Oceanogr 38:1214–1226

    Google Scholar 

  100. Schotanus P, Nieuwstadt F, Bruin H (1983) Temperature measurement with a sonic anemometer and its application to heat and moisture fluxes. Boundary-Layer Meteorol 26:81–93

    Google Scholar 

  101. Shuttleworth WJ (1993) Evaporation, chapter 4. In: Maidment DR (ed) Handbook of hydrology. McGraw-Hill, New York, pp 4.1–4.53

    Google Scholar 

  102. Spank U (2010) Site water budget: influences of measurement uncertainties on measurement results and model results. Dissertation, Technischen Universität Dresden, Dresden, Germany. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-62557. Last access 5 Feb 2019

  103. Spank U, Bernhofer C (2008) Another simple method of spectral correction to obtain robust eddy-covariance results. Boundary-Layer Meteorol 128:403–422

    Google Scholar 

  104. Spank U, Schwärzel K, Renner M, Moderow U, Bernhofer C (2013) Effects of measurement uncertainties of meteorological data on estimates of site water balance components. J Hydrol 492:176–189

    Google Scholar 

  105. Spank U, Köstner B, Moderow U, Grünwald T, Bernhofer C (2016) Surface conductance of five different crops based on 10 years of eddy-covariance measurements. Meteorol Z 25(3):251–266

    Google Scholar 

  106. St. Louis VL, Kelly CA, Duchemin É, Rudd JWM, Rosenberg DM (2000) Reservoir surfaces as sources of greenhouse gases to the atmosphere: a global estimate. Bioscience 50:766–775

    Google Scholar 

  107. Stoy PC, Mauder M, Foken T, Marcolla B, Boegh E, Ibrom A, Arain MA, Arneth A, Aurela M, Bernhofer C, Cescattik A, Dellwik E, Duce P, Gianelle D, van Gorsel E, Kiely G, Knohl A, Margolis H, McCaughey H, Merbold L, Montagnani L, Papale D, Reichstein M, Saunders M, Serrano-Ortiz P, Sottocornola M, Spano D, Vaccari F, Varlagin A (2013) A data-driven analysis of energy balance closure across FLUXNET research sites: the role of landscape scale heterogeneity. Agric For Meteorol 171–172:137–152

    Google Scholar 

  108. Tang KW, McGinnis DF, Ionescu D, Grossart H-P (2016) Methane production in oxic lake waters potentially increases aquatic methane flux to air. Environ Sci Technol Lett 3:227–233

    Google Scholar 

  109. The University of Edinburgh (School of GeoSciences, Institute of Atmospheric and Environmental Science) (2007) EdiRe. https://www.geos.ed.ac.uk/homes/jbm/micromet/EdiRe/. Last access 6 Feb 2019

  110. Thornton KW, Kimmel BL, Payne FE (1990) Reservoir limnology: ecological perspectives. Wiley, New York

    Google Scholar 

  111. Tremblay A, Therrien J, Hamlin B, Wichmann E, LeDrew LJ (2005) GHG emissions from boreal reservoirs and natural aquatic ecosystems. In: Tremblay A, Varfalvy L, Roehm C, Garneau M (eds) Greenhouse gas emissions—fluxes and processes. Springer, Berlin, pp 209–232

    Google Scholar 

  112. Twine TE, Kustas WP, Norman JM, Cook DR, Houser PR, Meyers TP, Prueger JH, Starks PJ, Wesely ML (2000) Correcting eddy-covariance flux underestimates over a grassland. Agric For Meteorol 103:279–300

    Google Scholar 

  113. Vesala T, Huotari J, Rannik Ü, Suni T, Smolander S, Sogachev A, Launiainen S, Ojala A (2006) Eddy covariance measurements of carbon exchange and latent and sensible heat fluxes over a boreal lake for a full open-water period. J Geophys Res 111:D11101

    Google Scholar 

  114. Vickers D, Mahrt L (1997) Quality control and flux sampling problems for tower and aircraft data. J Atmos Ocean Technol 14:512–526

    Google Scholar 

  115. Webb EK, Pearman GI, Leuning R (1980) Correction of flux measurements for density effects due to heat and water vapour transfer. Q J R Meteorol Soc 106:85–100

    Google Scholar 

  116. Weisser D (2007) A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies. Energy 32:1543–1559

    Google Scholar 

  117. Wendt-Potthoff K, Kloß C, Schultze M, Koschorreck M (2014) Anaerobic metabolism of two hydro-morphological similar pre-dams under contrasting nutrient loading (Rappbode Reservoir System, Germany). Int Rev Hydrobiol 99(5):350–362

    Google Scholar 

  118. Wentzky VC, Tittel J, Jäger CG, Rinke K (2018) Mechanisms preventing a decrease in phytoplankton biomass after phosphorus reductions in a German drinking water reservoir—results from more than 50 years of observation. Freshw Biol 63:1063–1076

    Google Scholar 

  119. Wentzky VC, Frassl MA, Rinke K, Boehrer B (2019) Metalimnetic oxygen minimum and the presence of Planktothrix rubescens in a low-nutrient drinking water reservoir. Water Res 148:208–218

    Google Scholar 

  120. Wilczak JM, Oncley SP, Stage SA (2001) Sonic anemometer tilt correction algorithms. Boundary-Layer Meteorol 99:127–150

    Google Scholar 

  121. Wilson K, Goldstein A, Falge E, Aubinet M, Baldocchi D, Berbigier P, Bernhofer C, Ceulemans R, Dolman H, Field C (2002a) Energy balance closure at FLUXNET sites. Agric For Meteorol 113:223–243

    Google Scholar 

  122. Wilson KB, Baldocchi DD, Aubinet M, Berbigier P, Bernhofer C, Dolman H, Falge E, Field C, Goldstein A, Granier A, Grelle A, Halldor T, Hollinger D, Katul G, Law BE, Lindroth A, Meyers T, Moncrieff J, Monson R, Oechel W, Tenhunen J, Valentini R, Verma S, Vesala T, Wofsy S (2002b) Energy partitioning between latent and sensible heat flux during the warm season at FLUXNET sites. Water Resour Res 38:30/1–30/11

    Google Scholar 

  123. Zhao X, Liu Y (2017) Phase transition of surface energy exchange in China’s largest freshwater lake. Agric For Meteorol 244–245:98–110

    Google Scholar 

  124. Zhao Y, Wu BF, Zeng Y (2013) Spatial and temporal patterns of greenhouse gas emissions from Three Gorges Reservoir of China. Biogeosciences 10:1219–1230

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) in the frame of the project “Greenhouse Gas Emissions from Reservoirs: Mechanisms and Quantification—TregaTa” (Project Number: 288267759). We greatly appreciate the support of the Talsperrenbetrieb Sachsen-Anhalt for providing infrastructure, data and access to the water. Especially, we thank Mr. Henning, Mrs. Dietze, Mr. Wedel and the technical staff for their personal commitment. Special thank go to Udo Postel, Uwe Eichelmann, Heiko Prasse and Martin Wieprecht for their technical assistance. In particular, we are grateful to the editor and both unknown reviewers for the constructive comments that helped us to improve our manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Uwe Spank.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spank, U., Hehn, M., Keller, P. et al. A Season of Eddy-Covariance Fluxes Above an Extensive Water Body Based on Observations from a Floating Platform. Boundary-Layer Meteorol 174, 433–464 (2020). https://doi.org/10.1007/s10546-019-00490-z

Download citation

Keywords

  • Eddy covariance
  • Evaporation
  • Greenhouse gas emissions
  • Mass and energy exchange
  • Methane and carbon dioxide fluxes