Turbulent Helicity in the Atmospheric Boundary Layer

  • Otto G. Chkhetiani
  • Michael V. Kurgansky
  • Natalia V. Vazaeva
Research Article
  • 18 Downloads

Abstract

We consider the assumption postulated by Deusebio and Lindborg (J Fluid Mech 755:654–671, 2014) that the helicity injected into the Ekman boundary layer undergoes a cascade, with preservation of its sign (right- or alternatively left-handedness), which is a signature of the system rotation, from large to small scales, down to the Kolmogorov microscale of turbulence. At the same time, recent direct field measurements of turbulent helicity in the steppe region of southern Russia near Tsimlyansk Reservoir show the opposite sign of helicity from that expected. A possible explanation for this phenomenon may be the joint action of different scales of atmospheric flows within the boundary layer, including the sea-breeze circulation over the test site. In this regard, we consider a superposition of the classic Ekman spiral solution and Prandtl’s jet-like slope-wind profile to describe the planetary boundary-layer wind structure. The latter solution mimics a hydrostatic shallow breeze circulation over a non-uniformly heated surface. A 180°-wide sector on the hodograph plane exists, within which the relative orientation of the Ekman and Prandtl velocity profiles favours the left rotation with height of the resulting wind velocity vector in the lowermost part of the boundary layer. This explains the negative (left-handed) helicity cascade toward small-scale turbulent motions, which agrees with the direct field measurements of turbulent helicity in Tsimlyansk. A simple turbulent relaxation model is proposed that explains the measured positive values of the relatively minor contribution to turbulent helicity from the vertical components of velocity and vorticity.

Keywords

Breeze circulation Ekman boundary layer Helicity Thermal stratification 

Notes

Acknowledgements

We thank L.O. Maximenkov and V.A. Bezverkhniy for help with organizing Figs. 5 and 6, and are sincerely grateful to B.M. Koprov, V.M. Koprov and M.E. Gorbunov for helpful discussions and kind collaboration. We also thank three anonymous reviewers whose critical review and useful suggestions contributed tremendously to improvements in the content and in the style of this article. The work is supported by the Russian Foundation for Basic Research, Project Nos. 15-05-02407-a and 17-05-01116-a.

References

  1. André JC, Lesieur M (1977) Influence of helicity on the evolution of isotropic turbulence at high Reynolds number. J Fluid Mech 81(01):187–207CrossRefGoogle Scholar
  2. Avinash V, Verma MK, Chandra AV (2006) Field-theoretic calculation of kinetic helicity flux. Pramana J Phys 66(2):447–453CrossRefGoogle Scholar
  3. Bluestein H (1992) Synoptic-dynamic meteorology in midlatitudes: principles of kinematics and dynamics, vol 1. Oxford University Press, OxfordGoogle Scholar
  4. Briard A, Gomez T (2017) Dynamics of helicity in homogeneous skew-isotropic turbulence. J Fluid Mech 821:539–581CrossRefGoogle Scholar
  5. Brissaud A, Frisch U, Leorat J, Lesieur M, Mazure A (1973) Helicity cascades in fully developed isotropic turbulence. Phys Fluids 16:1366–1377CrossRefGoogle Scholar
  6. Brutsaert W (1984) Evaporation into the atmosphere. D. Reidel Publ. Company, DordrechtGoogle Scholar
  7. Businger JA, Wyngaard JC, Izumi I, Bradley EF (1971) Flux-profile relationships in the atmospheric surface layer. J Atmos Sci 28:181–189CrossRefGoogle Scholar
  8. Chen Q, Chen S, Eyink GL (2003) The joint cascade of energy and helicity in three-dimensional turbulence. Phys Fluids 15(2):361–374CrossRefGoogle Scholar
  9. Chkhetiani OG (2001) On the helical structure of the Ekman boundary layer. Izv Atmos Ocean Phys 37:569–575Google Scholar
  10. Deardorff JW (1972) Theoretical expression for the counter-gradient vertical heat flux. J Geophys Res 77:5900–5904CrossRefGoogle Scholar
  11. Deusebio E, Lindborg E (2014) Helicity in the Ekman boundary layer. J Fluid Mech 755:654–671CrossRefGoogle Scholar
  12. Ditlevsen PD (2011) Turbulence and shell models. Cambridge University Press, CambridgeGoogle Scholar
  13. Ditlevsen PD, Giuliani P (2001a) Dissipation in helical turbulence. Phys Fluids 13:3508–3509CrossRefGoogle Scholar
  14. Ditlevsen PD, Giuliani P (2001b) Cascades in helical turbulence. Phys Rev E 63(3):036304CrossRefGoogle Scholar
  15. Etling D (1985) Some aspects of helicity in atmospheric flows. Beitr Phys Atmos 58(1):88–100Google Scholar
  16. Etling D (1996) Theoretische Meteorologie. Eine Einführung. Vieweg & Sohn, Braunschweig, WiesbadenCrossRefGoogle Scholar
  17. Foken T (2008) Micrometeorology. Springer, BerlinGoogle Scholar
  18. Forsythe WE (2003) Smithsonian physical tables, 9th edn. Smithsonian Institution, WashingtonGoogle Scholar
  19. Gutman LN (1972) Introduction to the nonlinear theory of mesoscale meteorological processes. Edited by G.I. Marchuk. Translated from Russian. Israel Program for Scientific Translations, Jerusalem (Russian original: Gutman LN (1969) Vvedenie v nelineinuyu teoriyu mesometeorologicheskikh protsessov. Gidrometeoizdat, Leningrad)Google Scholar
  20. Hauf T (1985) Rotating clouds within cloud streets. Beitr Phys Atmos 58(3):380–398Google Scholar
  21. Hide R (1989) Superhelicity, helicity and potential vorticity. Geophys Astrophys Fluid Dyn 48:69–79CrossRefGoogle Scholar
  22. Hide R (2002) Helicity, superhelicity and weighted relative potential vorticity. Useful diagnostic pseudoscalars? Q J R Meteorol Soc 128:1759–1762CrossRefGoogle Scholar
  23. Högström U (1988) Non-dimensional wind and temperature profiles in the atmospheric surface layer: a re-evaluation. Boundary-Layer Meteorol 42:55–78CrossRefGoogle Scholar
  24. Koprov BM, Koprov VM, Ponomarev VM, Chkhetiani OG (2005) Experimental studies of turbulent helicity and its spectrum in the atmospheric boundary layer. Dokl Phys 50:419–422CrossRefGoogle Scholar
  25. Koprov BM, Koprov VM, Kurgansky MV, Chkhetiani OG (2015) Helicity and potential vorticity in surface turbulence. Izv Atmos Ocean Phys 51:565–575CrossRefGoogle Scholar
  26. Kouznetsov RD (2009) The multi-frequency sodar with high temporal resolution. Meteorol Z 18(2):169–173CrossRefGoogle Scholar
  27. Krause F, Raedler K-H (1980) Mean-field magnetohydrodynamics and dynamo theory. Academie, BerlinGoogle Scholar
  28. Kurgansky MV (1989) Relationship between helicity and potential vorticity in a compressible rotating fluid. Izv Atmos Ocean Phys 25(12):979–981Google Scholar
  29. Kurgansky MV (1993) Introduction to large-scale atmospheric dynamics (adiabatic invariants and their use). Gidrometeoizdat, Saint Petersburg (in Russian) Google Scholar
  30. Kurgansky MV (2002) Adiabatic invariants in large-scale atmospheric dynamics. Taylor & Francis, LondonCrossRefGoogle Scholar
  31. Kurgansky MV (2005) A simple model of dry convective helical vortices (with applications to the atmospheric dust devil). Dyn Atmos Ocean 40:151–162CrossRefGoogle Scholar
  32. Kurgansky MV (2017) Helicity in dynamic atmospheric processes. Izv Atmos Ocean Phys 52(2):127–141CrossRefGoogle Scholar
  33. Kurien S, Taylor MA, Matsumoto T (2004) Cascade time scales for energy and helicity in homogeneous isotropic turbulence. Phys Rev E 69:066313CrossRefGoogle Scholar
  34. Lilly DK (1986) The structure, energetics and propagation of rotating convective storms. Part II. Helicity and storm stabilization. J Atmos Sci 42(2):126–140CrossRefGoogle Scholar
  35. McMillen RT (1988) An eddy correlation technique with extended applicability to non-simple terrain. Boundary-Layer Meteorol 43:231–245CrossRefGoogle Scholar
  36. Moffatt HK (1969) The degree of knottedness of tangled vortex lines. J Fluid Mech 35(1):117–129CrossRefGoogle Scholar
  37. Moffatt HK (1978) Magnetic field generation in electrically conducting fluids. Cambridge University Press, CambridgeGoogle Scholar
  38. Moreau J-J (1961) Constantes d’un ilot tourbillonnaire en fluide parfait barotrope. C R Acad Sci Paris 252:2810–2812Google Scholar
  39. Ponomarev VM, Chkhetiani OG (2005) Semiempirical model of the atmospheric boundary layer with parametrization of turbulent helicity effect. Izv Atmos Ocean Phys 41:418–432Google Scholar
  40. Ponomarev VM, Khapaev AA, Chkhetiani OG (2003) Role of helicity in the formation of secondary structures in the Ekman boundary layer. Izv Atmos Ocean Phys 39(4):391–400Google Scholar
  41. Prandtl L (1942) Führer durch die Strömungslehre. Vieweg & Sohn, BraunschweigGoogle Scholar
  42. Rotta JC (1951) Statistische Theorie nichthomogener Turbulenz. Z Phys 129:547–572CrossRefGoogle Scholar
  43. Shapiro A, Fedorovich E (2007) Katabatic flow along a differentially cooled sloping surface. J Fluid Mech 571:149–175CrossRefGoogle Scholar
  44. Shapiro A, Fedorovich E (2013) Similarity model for unsteady free convection flows along a differentially cooled horizontal surface. J Fluid Mech 736:444–463CrossRefGoogle Scholar
  45. Stubley GD, Riopelle G (1988) The influence of the earth’s rotation on planetary boundary-layer turbulence. Boundary-Layer Meteorol 45(4):307–324CrossRefGoogle Scholar
  46. Tan Z, Wu R (1994) Helicity dynamics of atmospheric flow. Adv Atmos Sci 11(2):175–188CrossRefGoogle Scholar
  47. Van de Wiel BJH, Moene AF, Jonker HJJ (2012) The cessation of continuous turbulence as precursor of the very stable nocturnal boundary layer. J Atmos Sci 69:3097–3115CrossRefGoogle Scholar
  48. Vazaeva NV, Chkhetiani OG, Kuznetsov RD, Kallistratova MA, Kramar VF, Lyulyukin VS, Kuznetsov DD (2017) Estimate of helicity in the atmospheric boundary layer based on acoustic sounding data. Izv Atmos Ocean Phys 53(2):174–186CrossRefGoogle Scholar
  49. Vorontsov PA (1955) Breezes of Tsimlyansk Reservoir. Trudy Glav Geofiz Obs 54(116):81–95 (in Russian) Google Scholar
  50. Wyngaard JC (2010) Turbulence in the atmosphere. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  51. Wyngaard JC, Coté OR, Rao KS (1975) Modeling the atmospheric boundary layer. Adv Geophys 18:193–211CrossRefGoogle Scholar
  52. Zilitinkevich S, Gryanik VM, Lykossov VN, Mironov DV (1999) Third-order transport and nonlocal turbulence closures for convective boundary layers. J Atmos Sci 56:3463–3477CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  • Otto G. Chkhetiani
    • 1
  • Michael V. Kurgansky
    • 1
  • Natalia V. Vazaeva
    • 1
  1. 1.A.M. Obukhov Institute of Atmospheric PhysicsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations