Skip to main content

High-Frequency Response of the Atmospheric Electric Potential Gradient Under Strong and Dry Boundary-Layer Convection

Abstract

The spectral response of atmospheric electric potential gradient gives important information about phenomena affecting this gradient at characteristic time scales ranging from years (e.g., solar modulation) to fractions of a second (e.g., turbulence). While long-term time scales have been exhaustively explored, short-term scales have received less attention. At such frequencies, space-charge transport inside the planetary boundary layer becomes a sizeable contribution to the potential gradient variability. For the first time, co-located (Évora, Portugal) measurements of boundary-layer backscatter profiles and the 100-Hz potential gradient are reported. Five campaign days are analyzed, providing evidence for a relation between high-frequency response of the potential gradient and strong dry convection.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Notes

  1. 1.

    Potential gradient is related to the vertical component of the atmospheric electric field, \(E_{z}\), by the relation \({ PG} = -E_{z}\) to guarantee positive values for potential gradient in fair-weather conditions as defined by Chalmers (1967). The fair-weather days are selected for cloudiness <0.2, wind speed <5\(\hbox { m s}^{-1}\), and the absence of fog or precipitation.

  2. 2.

    Inspection of the signal spectra at least up to \(\approx \)50 Hz is recommended and to do that it is necessary to measure at least \(\approx \)100 Hz.

References

  1. Anderson RV (1976) Atmospheric electricity in the real world. In: Dolezalek H, Reiter R, Landsberg HE (eds) Electrical processes in atmospheres. Steinkopff, Darmstadt, pp 87–99. doi:10.1007/978-3-642-85294-7_13

    Chapter  Google Scholar 

  2. Anisimov SV, Mareev EA, Shikhova NM, Dmitriev EM (2002) Universal spectra of electric field pulsations in the atmosphere. Geophys Res Lett 29(24):2217. doi:10.1029/2002GL015765

    Article  Google Scholar 

  3. Anisimov SV, Galichenko SV, Shikhova NM (2014a) Space charge and aeroelectric flows in the exchange layer: an experimental and numerical study. Atmos Res 135–136:244–254. doi:10.1016/j.atmosres.2013.01.012

    Article  Google Scholar 

  4. Anisimov SV, Afinogenov KV, Shikhova NM (2014b) Dynamics of undisturbed midlatitude atmospheric electricity: from observations to scaling. Radiophys Quantum Electron 56(11):709–722. doi:10.1007/s11141-014-9475-z

    Article  Google Scholar 

  5. Chalmers JA (1946) The ionisation in the lower regions of the atmosphere. Q J R Meteorol Soc 72:199–205. doi:10.1002/qj.49707231217

    Article  Google Scholar 

  6. Chalmers JA (1967) Atmospheric electricity, 2nd edn. Pergamon Press, New York

    Google Scholar 

  7. Chubb J (2014) The measurement of atmospheric electric fields using pole mounted electrostatic fieldmeters. J Electrostat 72:295–300. doi:10.1016/j.elstat.2014.05.002

    Article  Google Scholar 

  8. Chubb J (2015) Limitations on the performance of ‘field mill’ fieldmeters with alternating electric fields. J Elesctrostat 78:1–3. doi:10.1016/j.elstat.2015.09.001

    Article  Google Scholar 

  9. Conceição R, Silva HG (2015) Simulations of the global electrical circuit coupled to local Potential gradient measurements. J Phys Conf Ser 646:012017. doi:10.1088/1742-6596/646/1/012017

    Article  Google Scholar 

  10. Conceição R, Melgão M, Silva HG, Nicoll K, Harrison RG, Reis AH (2015) Transport of the smoke plume from Chiado’s fire in Lisbon (Portugal) sensed by atmospheric electric field measurements. Air Qual Atmos Health. doi:10.1007/s11869-015-0337-4

    Google Scholar 

  11. Costa MJ, Bortoli D, Pereira S, Silva AM, Wagner F, Belo N, Guerrero-Rascado JL, Navas-Guzman F, Alados-Arboledas L (2007) Analysis of the measurements taken by a ceilometer installed in the south of Portugal. In: Camerón A, Schäfer K, Slusser JR, Picard RH, Amodeo A (eds) Remote sensing of clouds and the atmosphere XII, Proceedings of SPIE (SPIE Bellingham, WA, 2007), pp 674523-1–674523-12

  12. Cuxart J, Bougeault P, Redelsperger JL (2000) A turbulence scheme allowing for mesoscale and large-eddy simulations. Q J R Meteorol Soc 126(562):1–30. doi:10.1002/qj.49712656202

    Article  Google Scholar 

  13. Elias T, Silva AM, Belo N, Pereira S, Formenti P, Helas G, Wagner F (2006) Aerosol extinction in a remote continental region of the Iberian Peninsula during summer. J Geophys Res 111(D14204):1–20. doi:10.1029/2005JD006610

    Google Scholar 

  14. Harrison RG (2013) The Carnegie curve. Surv Geophys 34:209–232. doi:10.1007/s10712-012-9210-2

    Article  Google Scholar 

  15. Holben BN, Eck TF, Slutsker I, Tanre D, Buis JP, Setzer A, Vermote E, Reagan JA, Kaufman YJ, Nakajima T, Lavenu F, Jankowiak I, Smirnov A (1998) AERONET-A federated instrument network and data archive for aerosol characterization. Remote Sens Environ 66:1–16. doi:10.1016/S0034-4257(98)00031-5

    Article  Google Scholar 

  16. Hoppel WA, Anderson RV, Willett JC (1986) Atmospheric electricity in the planetary boundary-layer. In: Krider EP, Roble RG (eds) The Earth’s electrical environment. National Academy Press, Washington, pp 149–165

  17. Isräel H (1959) Atmospheric electrical agitation. Q J R Meteorol Soc 85:91–104. doi:10.1002/qj.49708536403

    Article  Google Scholar 

  18. Marshall TC, Rust WD, Stolzenburg M, Roeder WP, Krehbiel PR (1999) A study of enhanced fair-weather electric fields occurring soon after sunrise. J Geophys Res Atmos 104(D20):24455–24469. doi:10.1029/1999JD900418

    Article  Google Scholar 

  19. Masson V, Champeaux JL, Chauvin F, Meriguet C, Lacaze R (2003) A global database of land surface parameters at 1-km resolution in meteorological and climate models. J Clim 16(9):1261–1282. doi:10.1175/1520-0442-16.9.1261

    Article  Google Scholar 

  20. Masson V, Le Moigne P, Martin E et al (2013) The SURFEXv7.2 land and ocean surface platform for coupled or offline simulation of earth surface variables and fluxes. Geosci Model Dev 6(4):929–960. doi:10.5194/gmd-6-929-2013

    Article  Google Scholar 

  21. Lafore J, Stein J, Asencio N, Bougeault P, Ducrocq V, Duron J, Fischer C, Hereil P, Mascart P, Pinty J, Redelsperger J, Richard E, Arellano J (1998) The Meso-NH atmospheric simulation system. Part 1: adiabatic formulation and control simulation. Ann Geophys 16:90–109. doi:10.1007/s00585-997-0090-6

  22. Nicoll K, Harrison RG, Silva HG, Salgado R, Melgao M, Bortoli D (2017) Electrical sensing of the dynamical structure of the planetary boundary-layer. J Geophys Res (submitted)

  23. Pergaud J, Masson V, Malardel S, Couvreux F (2009) A parameterization of dry thermals and shallow cumuli for mesoscale numerical weather prediction. Boundary-Layer Meteorol 132:83–106. doi:10.1007/s10546-009-9388-0

    Article  Google Scholar 

  24. Piper IM, Bennett AJ (2012) Observations of the atmospheric electric field during two case studies of boundary-layer processes. Environ Res Lett 7:014017. doi:10.1088/1748-9326/7/1/014017

    Article  Google Scholar 

  25. Policarpo C, Salgado R, Costa MJ (2017) Numerical simulations of fog events in southern Portugal. Adv Meteorol. doi:10.1155/2017/1276784

    Google Scholar 

  26. Roth EP, Petit RB (1980) Effect of soiling on solar mirrors and techniques used to maintain high reflectivity. In: Murr L (ed) Solar material science. Academic Press, New York, pp 199–227

    Google Scholar 

  27. Rycroft MJ, Nicoll KA, Aplin KL, Harrison RG (2012) Recent advances in global electric circuit coupling between the space environment and the troposphere. J Atmos Sol Terr Phys 90–91:198–211. doi:10.1016/j.jastp.2012.03.015

    Article  Google Scholar 

  28. Sayyah A (2014) Yield loss of photovoltaic panels caused by depositions. Sol Energy 107:576–604. doi:10.1016/j.solener.2014.05.030

    Article  Google Scholar 

  29. Silva HG, Conceição R, Melgão M, Nicoll K, Mendes PB, Tlemçani M, Reis AH, Harrison RG (2014) Atmospheric electric field measurements in urban environment and the pollutant aerosol weekly dependence. Environ Res Lett 9:114025. doi:10.1088/1748-9326/9/11/114025

    Article  Google Scholar 

  30. Silva HG, Lopes FM, Pereira S, Nicoll K, Barbosa SM, Conceição R, Neves S, Harrison RG, Collares Pereira M (2016) Saharan dust electrification perceived by a triangle of atmospheric electricity stations in southern Portugal. J Electrostat 84:106–120. doi:10.1016/j.elstat.2016.10.002

    Article  Google Scholar 

  31. Stull RB (1988) An introduction to boundary layer meteorology. Kluwer Academic Publishers, Dordrecht

  32. Tacza J, Raulin JP, Macotela E, Norabuena E, Fernandez G, Correia E, Rycroft MJ, Harrison RG (2014) A new South American network to study the atmospheric electric field and its variations related to geophysical phenomena. J Atmos Sol Terr Phys 120:70–79. doi:10.1016/j.jastp.2014.09.001

    Article  Google Scholar 

  33. Wright MD, Holden NK, Shallcross DE, Henshaw DL (2014) Indoor and outdoor atmospheric ion mobility spectra, diurnal variation, and relationship with meteorological parameters. J Geophys Res Atmos. doi:10.1002/2013JD020956

    Google Scholar 

  34. Yaniv Y, Yair Y, Price C, Katz S (2016) Local and global impacts on the fair-weather electric field in Israel. Atmos Res 172–173:119–125. doi:10.1016/j.atmosres.2015.12.025

    Article  Google Scholar 

Download references

Acknowledgements

RC and HGS acknowledge the Renewable Energy Chair for grants attributed by this research facility. RC also acknowledges the FCT Scholarship SFRH/BD/116344/2016. This work is co-funded by the European Union through the European Regional Development Fund, framed in COMPETE 2020 (Operational Programme Competitiveness and Internationalisation) through the ICT Project (UID/GEO/04683/2013) with Reference POCI-01-0145-FEDER-007690 and through the ALOP Project (ALT20-03-0145-FEDER-000004). Thanks are due to AERONET/PHOTONS and RIMA networks for the scientific and technical support. CIMEL calibration was performed at the AERONET-EUROPE GOA calibration centre, supported by ACTRIS under Agreement No. 654109 (H2020-INFRAIA-2014-2015). Gratitude are also given to the TOPROF (ES-1303) and ELECTRONET (CA15211) COST-Actions. Dr. John Chubb is honoured here for his overwhelming contribution to atmospheric electricity. More than a scientist, he was an exceptional person and friend, and he will be missed. A final acknowledgement is given to Giles Harrison and Keri Nicoll for discussions related to the present study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hugo Gonçalves Silva.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Conceição, R., Silva, H.G., Bennett, A. et al. High-Frequency Response of the Atmospheric Electric Potential Gradient Under Strong and Dry Boundary-Layer Convection. Boundary-Layer Meteorol 166, 69–81 (2018). https://doi.org/10.1007/s10546-017-0298-2

Download citation

Keywords

  • Atmospheric electric potential gradient
  • Convection
  • Planetary boundary-layer backscatter
  • Space-charge dynamics